The Emphasis on Applied Mathematics Today and Its
Implications for the Mathematics Curriculum

Peter J. Hilton*

1. Across the country, and beyond the borders of the United States. the cry
is being heard that we mathematicians should be concerning ourselves more,
both in.our research and in our teaching, with applications of mathematics.
It is being argued that we have been overemphasizing mathematics itself, the
autonomous discipline of mathematics, at the expense of due attention to its
usefulness, to its role in science, in engineering, in the conduct of modern
society. Some put it crudely—there is too much “;pure mathematics,” too
little *“ applied mathematics.”

The argument is an important one; it is rendered the more crucial by its
relation to a critical problem now confronting the profession of academic
mathematicians—the declining enrollment in the mathematics major and, in
particular, in the more traditional upper division courses. How can this
process be arrested and reversed ? The answer is seen to be closely connected
with the idea that we should somehow seek to make our mathematics
courses more relevant to the needs and interests of today’s students, without
any sacrifice of standards or of integrity.

Many groups of mathematicians and mathematics educators have
devoted considerable effort to coming to grips with these related problems.
There is the reportt of the NRC Committee on Applied Mathematics Train-
ing; a panel of CUPM, under the chairmanship of Professor Alan Tucker, is
in the process of producing sample curricula with a decidedly “applied”
flavor; there is a joint MAA-SIAM Committee considering undergraduate
and graduate courses; there are the recommendations of the PRIME 80
Conference; and much else.
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At this conference we have listened to some of the best applied mathema-
ticians describing recent work in their fields. With these stimulating talks
fresh in our minds it is natural to ask ourselves, as teachers of mathematics,
two questions. First, what emerges from these talks as the distinctive quality
of good applied mathematics; and, second, how can we prepare our students
to do the kind of work these mathematicians do and which they have so
vividly described.

First it is plain, above all else, from these talks that to do good work in
applied mathematics one needs to be a good mathematician. Of course, one
needs more, but one certainly needs this. Moreover, there is no natural
division of mathematics itself into applicable mathematics and mathematics
sui generis--our nine speakers have used, in their talks, apart from the
obvious areas of ordinary and partial differential equations, material from
combinatorics, commutative algebra, the theory of jets, algebraic geometry,
Lie groups and Lie algebras, differential topology, algebraic topology, fibre
bundle theory, deformation of complex structures, singularity theory and
functional analysis.* Moreover, the talks have been distinguished from talks
in so-called pure mathematics not by the manner of treatment, or the rigor
of the argument, but by the “real world ” motivation for the mathematical
problem. Thus if our students are to be able to follow in these footsteps, they
must have a broad and deep education in mathematics and an attitude of a
very positive kind towards applications. This conclusion is in striking
agreement with that of the NRC Committee referred to above, where both
points are made with great emphasis, and where, in keeping with the conclu-
sion that there is a fundamental unity ecncompassing the whole of mathema-
tics, pure and applied, a plea is made for a broad-based major in the
mathematical sciences, giving all students the encouragement and opportun-
ity to acquire familiarity with the way mathematics is, in fact, applied.

Can we then make a reasonable working definition of applied mathema-
tics? Let me attempt one, based on a definition of applied analysis given by
Kaper and Varga.t We propose the following:

“The term applied mathematics refers to a collection of activities directed
towards the formulation of mathematical models, the analysis of mathema-
tical relations occurring in these models, and the interpretation of the
analytical results in the framework of their intended application. The objec-
tive of an applied mathematics research activity is to obtain qualitative and
quantitative information about exact or approximate solutions. The
methods used are adapted from all areas of mathematics; because of the
universality of mathematics, one analysis often leads, simultaneously, to
applications in several diverse ficlds.”

* It is true that the talk by Professor Oster is different in kind from the others. It was the
deliberate plan of the program committee to put into the program one such exceptional talk.
The plan was splendidly vindicated!

+ Hans GG. Kaper and Richard S. Varga, Program Directions for Applied Analysis, Applied
Mathematical Sciences Division, Department of Energy (1980). I am most grateful for the
opportunity to see this paper. from which 1 have drawn many ideas.
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In this paper we will first make some general remarks about the nature of
mathematical modeling—these will form the content of the next section. We
will then suggest, in the third section, that the basic method of applied
mathematics is not, in fact, as distinctive as it at first appears; that, in fact, it
has much in common with processes of abstraction and generalization that
go on within mathematics itself. These remarks will lead us to the conclusion
that, by modifying our approach to the curriculum in certain ways that give
expression to the unity of the mathematical sciences which it is our task to
present to our students, we may prepare them to become mathematicians,
able and willing to place their knowledge and talents at the service of prob-
lems coming from within or without mathematics. Thus might the sterile
antagonism which one sometimes finds today between pure and applied
mathematics—and pure and applied mathematicians—be eliminated by
abandoning these labels and reverting to the notion of a single indivisible
discipline, mathematics.

2. What can be said in general of the process of mathematical modeling?
The following schema seems to reflect the methods described by the
illustrious—and successful—mathematicians who have spoken at this
conference:

| Real-life problem | o, | Scientific model | @, [ Mathematical model |

Step (O occurs whenever a mature science is involved ; it may well happen
in the soft social sciences that one proceeds directly from real-life problem to
mathematical model. Such a process is dangerous, because it is within the
scientific model that one locates the measurable constructs about which one
theorizes, quantitatively and qualitatively, within the mathematical model.
Thus the direct passage from problem to mathematical model, while often
intellectually exciting, is open to the objection that one may well be using
sophisticated mathematical tools to reason about extremely vague concepts
involving very unreliable measurements.

Let us then assume that a scientific model is, indeed, articulated. This will
consist, typically, of objects (observables, constructs) and laws (physical,
chemical, biological) about the behavior of matter in the form of liquids,
gases and solid particles. The selection of the appropriate scientific model,
step (D, may be called constructive analysis; for example, in the study of
energy systems (fission reactors, combustion chambers, coal gasification
plants), the laws express the rate of flow of mass, momentum and energy
between the components of the system. '

Step @ consists of choosing a mathematical model for the analysis of the
scientific system. The mathematical model is, by its very nature, both more
abstract and more general than the scientific system being modeled. Thus
the conservation laws for an incompressible viscous fluid lead to the Navier-
Stokes equation, which is an evolution equation; but we may also derive equi-
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librium equations leading to the study of bifurcation phenomena. Again, the
study of non-linear wave mechanics may lead to the Korteweg-de Vries
(KdV) equation for the behavior of long water waves in a rectangular
channel.* Here the theory predicts solitary waves which interact but emerge
unchanged—these are the solitons of modern theoretical physics. In these
examples, the original constructive analysis leads to the next stage of math-
ematical analysis (in these examples, qualitative analysis) within the math-
ematical models. Typically, again, this stage consists of proofs of existence of
solutions, together with a study of their uniqueness, stability (sensitivity to
changes of parameter), and behavior over large time intervals (asymptotic
analysis).

Quantitative analysis, however, also plays a key role in today’s applied
mathematics, due largely to the general availability of the high-speed
computer. Numerical methods of a sophisticated kind have been developed;
asymptotic and perturbation methods are widely used. One particularly
important new tool of quantitative analysis that one may mention here is the
“finite element ” method, invented by Richard Courant, but rediscovered by
engineers who saw its potential in conjunction with the computer. The
method itself is, of course, undergoing improvement and refinement.

In several of the talks presented at this conference, we have seen evidence
that our schema is often incomplete in one significant respect—the process
of elaborating a mathematical model may well be iterated. Thus our
scientific model may lead to a first-order differential equation which can be
interpreted as a dynamical system and thus embedded in the theory of vector
bundles or, more generally, fibre bundles. Thus the existence of a solution is
translated, first, into an integrability problem and then into a cross-section
problem to which we may apply the techniques of obstruction theory. Thus
it would be very misleading to think of the process of abstraction and
generalization as a one-stage procedure; by the same token it is a mistake to
think of an area of mathematics as ineffably “ pure” because all its direct,
immediate contacts are with other areas of mathematics. This simplistic
view would have found no favor with our speakers at this conference, whose
views on the applicability of mathematics and on the relations between
so-called pure and applied mathematics excluded any possibility of a rigid
distinction being made.

Another very striking feature emerged from a consideration of the con-
tributions to this conference. The mathematical content of the talks bore
strong testimony to that universality of mathematics to which attention is
drawn in the description of the nature of applied mathematics quoted above.
For mathematicians adopting very different starting points in their
investigations—control systems, the study of porous media, embryogenesis,
bifurcation theory and turbulence—found themselves concerned with

* More precisely, the KdV equation describes the propagation of waves of small amplitude in a
dispersive medium.
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significantly overlapping domains of mathematics in the design and analysis
of their models. The Navier-Stokes equation, for example, together with its
linearization, figured in many contributions; and questions of stability, nat-
urally, arose frequently when systems of partial differential equations were
involved. Thus it may fairly be said that the talks displayed the salient
features of good mathematics in action—its unity, its subtlety, its diversity,
its power and its universality.

It is plain that if our students are to be able to apply mathematics effec-
tively, they must gain some understanding and experience of the art of
mathematical modeling. We do not recommend a special modeling course;
rather, the modeling process should be explicitly discussed when an applica-
tion of mathematics to a scientific problem is in question. We would our-
selves recommend that the discussion include the following component
items: the selection of a suitable problem; the development of an appro-
priate model; the collection of data; reasoning within the model (qualitative
analysis); calculations (quantitative analysis); reference back to the original
problem to test the validity of a solution; modification of the model; general-
ization of the model as a conceptual device. Moreover, the entire modeling
process must be set against the contemporary background of a strong com-
puter capability (actual or assumed).

However, it will be our claim in the next section that it is.unnecessary to
separate applications from the rest of mathematical activity in order to
emphasize the processes named above. We will suggest, in fact, that good
“applied ” mathematics and good “ pure ” mathematics have a great deal in
common, and that this complementarity should be reflected in the under-
graduate curriculum.

3. The question I wish to consider in this section is this—how special to
applied mathematics are the techniques and procedures described in the
previous section? Of course, in one sense they certainly are special; for if we
start off with a “ real world ” problem and apply mathematical reasoning, we
are ipso facto doing applied mathematics. Thus for the question to make any
sense, we must allow that the original problem to be tackled mathematically
could itself be a mathematical problem. We would then claim that the
process of abstraction which is characteristic of the schema we described in
Section 2 also features in work within mathematics itself. Let us immediately
give an example; this is admittedly a relatively trivial piece of mathematics,
but it is without doubt a piece of mathematics currently pertaining to the
undergraduate curriculum. We allow ourselves, here and subsequently, to
consider the closely related processes of abstraction and generalization.
Suppose that it is observed that 5% =1 mod 7. This may be verified
empirically-——thus we compute 5° — 1, obtaining 15624 and check that 15624
is exactly divisible by 7. This argument is compelling and convincing—but
unsatisfactory We do not feel, with this demonstration, that we understand
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why the assertion is true.* The situation is ripe for generalization; we make a
mathematical model! We conjecture, and then prove, that if p is any prime
number and if a is prime to p, then (Fermat’'s Theorem) a®~ ' = 1 mod p.
Notice that this is a generalization, not an abstraction, because we are still
talking about rational integers. However, we may not feel entirely satisfied
with the generality of Fermat’s Theorem. We could proceed in one direction
to Euler’s Theorem; or we could regard Fermat’s Theorem as itself a special
case of Lagrange’s Theorem that the order of a subgroup of a finite group
divides the order of the group. This latter development involves abstraction
as well as generalization, for we are now discussing abstract groups, and
postulate, in our abstract system, only one binary operation (whereas the
integers admit two, and both were involved in our original demonstration
that 5¢ = 1 mod 7), which need not even be commutative.

A particular feature of this example is the iteration of the modeling
(generalizing) process; as we saw, this is also, frequently, a feature of applied
mathematics. On the other hand, let us immediately admit that there is also
a difference between modeling a non-mathematical problem, and the model-
ing we did here. In our example, we obtained incontrovertible proofs of our
original congruence, and, of course, of related congruences, whereas, in
applied mathematics, the mathematical reasoning can at best establish a
scientific assertion as a good working hypothesis, a good approximation to
the truth. Let us, however, give a second “ mathematical ” example to show
that this difference is not so absolute.

There is a beautiful numerical process, based on our base 10 enumeration
system, called casting out 9’s. What is involved here, in mathematical terms,
is the canonical ring projection 0: 7 — Z/9; we use the residue ring 7/9
because 11 is particularly easy to computet §. Now we may say that 6
provides .+ means of modeling identities in Z by means of identities in Z/9.
This is a good checking procedure, because it is far easier to do calculations
in Z/9 than in Z. However, we cannot prove identities in Z by modeling them
by true identities in Z/9; we can only disprove them by modeling them by
false identities. We are here involved in the important mathematical process
of simplification (with preservation of structure); there is a strong analogy
here with the simplification involved in modeling a real-world situation.

If we are to do justice to abstraction, generalization and simplification as
key processes within mathematics itself, we find ourselves led inevitably to
give prominence to the essential unity of mathematics. In practical terms this
means we must insist far less on the autonomy and (apparent) independence
of the various mathematical disciplines and emphasize their (real) inter-

* We are thus in the unfortunate situation so typical of our students! They are compelled to
accept but do not truly understand.

t In fact, 0 extends, uniquely, to a ring homomorphism Z; — Z/9, where Z; is the ring of
integers localized at the prime 3. Likewise the projection Z — Z/11 is easily computable and
extends to Z,, — Z/11.
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dependence. This poses severe problems in the design of curricula, but we
believe that perhaps the most important desideratum is the breadth of view
of the instructor.

Examples of interaction between different mathematical disciplines
abound, at the undergraduate as at any other level. Thus we use topology in
the foundations of real analysis (a continuous function from a compact
metric space to a Hausdorfl space is uniformly continuous); we use algebra
to do topology (the fundamental group); we use complex variable theory to
do algebra (the fundamental theorem of algebra); we use algebra to do
geometry (the syzygy method for proving Desargues’ Theorem in the co-
ordinatized plane); we use linear algebra to study systems of linear differential
equations (eigenvalues and eigenvectors). These and other examples can be
presented as modeling one mathematical situation by means of another. It is
our contention that this “applied perspective ” should be adopted in math-
ematics itself—and not merely for the worthy reason that this will help the
student to become familiar with the ways of doing applied mathematics!*

Are there essential differences between the methodologies of “ pure ” and
“applied ” mathematics? This is, in my view, a very interesting subject for
research, with strong implications for the teaching of mathematics. My own
thinking is still at a fairly primitive stage on this question, but let me offer
one fairly obvious example of an essential difference.

* The place of geometry in the curriculum is, today, a special concern and a special problem.
Students are arriving at our universities and colleges woefully ignorant of geometry and ser-
iously lacking in any geometric intuition. These failings undoubtedly contribute to the
difficulties they experience with the regular calculus sequence. Among the upper division
courses we also find that courses in geometry are under-subscribed (along with certain other
“traditional ” offerings). Indeed it may happen that the only viable geometry course is a course
designed for future high school teachers—this is viable in the sense that it will have an adequate
enrollment, but it usually fails to do justice to geometry as a living branch of mathematics.
We would recommend that the geometric point of view figure prominently in virtually all
undergraduate mathematics courses. This point of view allows one to conceptualize mo:e
easily; and geometry is a wonderful source of ideas and questions. Geometry, in this informal

sense, mu be thoug' ' of as partaking of the quality of both pure and applied mathematics—it
is, after all, of all the branches of mathematics, that which is closest to the world of our
experience.

It is probably not realistic to recommend an attempt to revive the study of geometry for its
own sake, in courses devoted exclusively to the discipline. But geometry is very “real” to the
students; it provides questions to which the disciplines of analysis and algebra provide answers.
Without geometry, these latter disciplines must often seem to the students to answer questions
they could never imagine themselves asking!

I would like to join Bert Kostant in making a special plea for a regular course in the
curriculum on Lie groups. Here geometry, algebra and analysis come together in a theory of
great power and importance to both pure and applied mathematics; it is, moreover. a subject
rich in history.

Naturally, at the graduate level, we should find a great interest among faculty and students
in algebraic and differential geometry, in view of the very significant advances currently being
made in these subjects, as autonomous disciplines, in their relations to other parts of mathe-
matics, and as suitabic models for problems coming from engineering and the physical sciences.
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Suppose we are modeling some physical phenomenon and produce a
differential equation with certain boundary conditions. Suppose further that
we prove that this mathematical system has no solution. The effect of this
discovery is to discredit the model—we must have over-simplified (say, by
linearizing) or we must have neglected some aspect of the physical situation
which was, in fact, highly relevant to the dynamic process we were modeling.
However, if we model a mathematical situation, the connection between the
situation and the model is far closer. There is still, as in applied problems,
the very difficult art of choosing a good model (e.g., a useful generalization);
but if the problem in the model has no solution, then the original problem
had no solution, either. This remains true whether we are generalizing or
simplifying in constructing our model.

4. We would like to close this essay with a few remarks on problem-solving
as a curricular or pedagogic device. The clamor for applications finds its
echo at the pre-college and even undergraduate level in a strong plea (en-
dorsed by the PRIME 80 Conference and the National Council of Teachers
of Mathematics, as a key element in their platforms) for greater emphasis on
problem-solving.

Now it is not in question-—and should always have been obvious—-that
the principal reason for learning mathematics is that it enables one to solve
problems. If certain programs have appeared to neglect this proposition
then they are undoubtedly, to that extent, seriously defective. However, what
is emerging from all the propaganda for problem-solving tends to be some-
thing very different in nature from a simple forceful recommendation to keep
in mind why we learn mathematics. For the advocates of problem-solving
seem to be arguing that we should be teaching problem-solving as an alter-
native to our traditional approach. Good pedagogical strategy should be
“problem-oriented,” they argue; and, if problem-solving is effectively taught,
we need not trouble the students so much to absorb the “ theory ” which has
hitherto proved a stumbling-block to them. An example of this attitude is to
be found in the publishers’ puff for a (very good) book on applied combina-
torics which reads, “Its applied approach gives your students the emphasis
on problem-solving that they need to participate in today’s new fields. Rather
than focus on theory, this text contains hundreds of worked examples with
discussion of common problem-solving errors ...”

Not for the first time, I must insist that this false dichotomy between the
building and analysis of mathematical structure on the one hand and
problem-solving on the other is dangerous. If problems are to be solved
mathematically, the mathematical model must be chosen. Either it must
already be available to the would-be problem-solver or he (or she) must be
capable of developing it by the modification of existing mathematical
models. Thus the investigator absolutely needs to know, to understand, and
to be able to discriminate between different mathematical structures.

There are, it is true, certain problem-soiving stiaiegies and precepis  iiici
it is worthwhile enunciating explicitly. But these cannot serve as a substitute



The Empbhasis on Applied Mathematics Today 163

for a knowledge of mathematics. One of the most impressive features of the
talks at this conference was the evidence of the vast array of mathematical
knowledge at the disposal of the speakers, and of how much they actually
needed for the particular investigations they described. It would be truly
calamitous if the belief were to be spread abroad that difficult quantitative
problems could be solved merely by becoming proficient in the field of
problem-solving, allying a knowledge of a few general principles to “sound
common sense.” This is just a sophisticated restatement of the old egalitar-
ian fallacy.

There is a further reason, too, less obvious at first, why it would be a
mistake to concentrate so exclusively on problem-solving. For it is implicit
in the concept of problem-solving that the problem has already been form-
ulated; it is further suggested that it is a matter then of selecting the best
mathematical model and successfully exploiting it. Thus the question of how
we formulate good questions is totally ignored——and this is an essentia:
question in scientific work. Moreover, the problem-solving approach
ignores the fact that it is often the mathematical concept and the mathemati-
cal result which suggest the promising question. Frequently it is an advance
in mathematics which enables us to see the true nature of a scientific prob-
lem more clearly and to pose the significant questions (this is eminently true,
for example, of electromagnetic theory and, more recently, the theory of
solitons). Thus the essential two-way flow between mathematics and science
is lost in an exclusively problem-solving mode of instruction.*

None of this, of course, is to gainsay the stimulus which the attempt to
solve interesting problems provides for the understanding and doing of
mathematics. The UMAP modules can be extremely valuable as a compon-
ent of a rich mathematical education. It should not be thought, however—
and here I believe I have understood the intentions of the UMAP editorial
board—that these modules are to be concentrated on applied topics. It is
easy to supply a list of mathematical topics suitable for modular treatment;
2 brief sample might include maximum and minimum problems treated by
variou . nietnods; thought-provoking paradoxes; linearization and linearity
in mathematics; computational complexity; the geometry of 3-dimensional
polyhedra; topics in combinatorics; algebraic curves; the classical groups.
However, as these topics should suggest, the modules do not replace the
systematic study of mathematics—they stimulate, enrich and enliven it. Ulti-
mately we can only serve the purpose of mathematics education, in all its
facets, by inculcating both the ability and the will to do mathematics and to
use it. If, as some enthusiasts for a more applied curriculum and for more
problem-solving rightly claim, the ability without the will leads to sterility, it
is also true that the will without the ability leads to frustration. We avoid
both these unpleasant consequences by teaching all of mathematics as a
unity, emphasizing its unique generality and its immense power.

* Problem-solving may be characterized as “ going from question to answer;” but scientific and
mathematical progress often consists of going from answer to question.



