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Abstract

Adult mammalian central nervous system (CNS) axons have
very limited capacity of regrowth after injury. In recent years,
advances in the field of axonal regeneration have proved
that neurons do not regenerate, mainly because of the pres-
ence of inhibitory molecules. Myelin-associated proteins lim-
it axonal outgrowth and their blockage improves the regen-
eration of damaged fiber tracts. Three of these proteins,
Nogo, MAG and OMgp, share a common neuronal receptor
(NgR), and together represent one of the main hindrances to
neuronal regeneration. The recent molecular cloning of
Nogo and its receptors opened a new door to the study of
axon regeneration. However, many of the elements involved
in the myelin inhibitory pathway are still unknown, and the
preliminary experiments with knockout mice are rather con-
tradictory. Because of this complexity, Nogo and NgR need
to be characterized before precise strategies to promote
axon regeneration in the CNS can be designed. 

Resum

El sistema nerviós dels mamífers té una baixa capacitat de
reparació axonal després d’una lesió. En els últims anys, di-
versos estudis han demostrat que els axons lesionats no po-
den recréixer a causa de la presència d’un gran nombre de
molècules inhibitòries. Les molècules associades a la mieli-
na limiten el creixement axonal i el seu bloqueig afavoreix la
regeneració de diverses connexions. Tres d’aquestes pro-
teïnes, Nogo, MAG i OMgp, comparteixen un mateix recep-
tor: NgR. El clonatge recent de Nogo ha obert noves vies
per estudiar la regeneració axonal. No obstant això, molts
dels elements involucrats en la via inhibitòria de la mielina
són desconeguts, i els primers estudis amb animals knock-
out són, a més, contradictoris. Per aquesta raó, Nogo i el
seu receptor han de caracteritzar-se abans de desenvolu-
par noves tècniques per promoure regeneració axonal.
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In the adult mammalian CNS, axons have very limited capac-
ity to regrow after an injury. Shortly after lesion, axons form a
new growth cone and begin to regenerate for a short time.
However, their growth cone soon collapses and sprouting is
aborted [73]. Several hypotheses have been put forward to
account for this failure of regeneration: mature neurons lose
their capacity of regeneration, the adult environment does
not provide neurotrophic support to foster regeneration or,
lastly, several inhibitory molecules limit axonal regeneration.
Early experiments with transplants of CNS grafts into periph-
eral nerves proved that mature neurons could regenerate if
provided with the right environment [17], thus, the presence
of inhibitory molecules is thought to be the main impediment

to axonal regrowth, rather than the lack of growth-promoting
factors [80].  Molecules associated with the glial scar or with
CNS myelin (such as Nogo-A) are the principal obstacle to
regrowth of axons after lesion. In this review, we summarize
current knowledge of Nogo-A and the other inhibitors associ-
ated with myelin, and discuss the importance of Nogo-A and
NgR in the failure of CNS neurons to regenerate.

CNS lesions are generally followed by the formation of the
glial scar, a structure formed mainly by astrocytes, although it
also recruits microglia, oligodendrocyte precursors, and
meningeal cells [23]. The glial scar is both a physical and a
biochemical barrier. However, the importance of this me-
chanical impediment is not clear, since in several lesions,
even in the absence of glial scar, axons fail to cross the lesion
site. The presence of inhibitory proteins, mainly expressed
by oligodendrocytes and astrocytes (but also by meningeal
and microglial cells), is thought to be the main impediment to
axonal regrowth. Astrocytes and oligodendrocyte precur-
sors produce chondroitin sulfate proteoglycans (CSPGs),
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and their expression is upregulated in the glial scar after le-
sion together with other inhibitory proteins of the extracellular
matrix such as Semaphorins (secreted by meningeal cells).
In addition, myelinating oligodendrocytes produce inhibitory
molecules such as Nogo-A or Tenascin-R [23]. CNS myelin
inhibits the regrowth of injured axons; this is mainly due to
myelin-associated proteins. Three of these have been identi-
fied: Nogo-A, the myelin-associated glycoprotein (MAG) and
the oligodendrocyte-myelin glycoprotein (OMgp) [16, 43, 51,
57]. The current model involves a neuronal GPI-linked recep-
tor (the Nogo receptor, NgR), three co-receptors (p75NTR,
Troy and Lingo), and three ligands expressed in association
with myelin: Nogo-A, MAG and OMgp. 

Myelin-derived proteins: the ligands

Nogo-A (NI-250)
Two decades ago, Schwab’s group identified two proteins in
myelin, called NI-250 and NI-35, as potent inhibitors of axon-
al growth [14]. A monoclonal antibody, termed IN-1, was
raised against NI-250 (although it recognized both NI-250
and NI-35), and blocked the inhibition of myelin, allowing ax-
ons to regrow [15]. IN-1 promoted axonal regeneration in
vivo in several injury models [8, 77, 90], but the identity of the
antigen NI-250 remained unknown until three groups inde-
pendently identified it as Nogo-A [16, 28, 68]. 

Nogo-A is the major transcript of the nogo gene (RTN4),
which gives rise to three isoforms called Nogo-A, Nogo-B
and Nogo-C according to their different promoter usage and
alternative splicing (Figure 1) [16]. Nogo (RTN4), together
with RTN1, RTN2 and RTN3, is a member of the Reticulon
family of proteins, a recently described family whose func-
tions remain unknown [62]. The products of the four reticulon
family genes share a common C-terminus that encodes the
reticulon-homology domain (RHD) [62]. This conserved 3’
sequence contains two predicted transmembrane domains
and a dilysine endopasmic reticulum (ER) retention motif,
where these proteins are mainly retained. Nogo-A (NI-250),
Nogo-B and Nogo-C appear in SDS-PAGE as ~200-250kDa,
~55kDa and ~25kDa bands, respectively. Nogo-A and
Nogo-B share a 172 aa N-terminus domain, followed in
Nogo-A by a central region (NiG) that is missing in Nogo-B
and –C. Nogo-C has a short 11 aa N-terminus domain and
all Nogo isoforms have the reticulon-homology domain at the
C-terminus (see below) (see Figure 1).

Nogo-A is mainly expressed in the CNS (Figure 2), but
also in testis and heart at low levels [35]. Nogo-B has a wide-
spread distribution and Nogo-C is predominantly expressed
in skeletal muscle [35]. All Nogo isoforms are expressed in
the CNS [62]. At the cellular level, Nogo-A is expressed by
oligodendrocytes, as was expected from its association with
myelin [16, 28]. Surprisingly, Nogo-A was also found to be
expressed by neurons [35, 36, 38, 54, 91] (Figure 2). Neu-
ronal Nogo-A mRNA expression is strong in spinal cord mo-
tor neurons, DRG, hippocampus, neocortex, cerebellar cor-
tex, habenular nuclei, piriform cortex, red nucleus,

oculomotor nucleus and pontine trigeminal nucleus [35, 36,
38]. Interestingly, developing fiber tracts also express Nogo-
A [54, 91], indicating that this protein could have functions
other than axonal growth inhibition during development. In
addition, we have reported a transitory expression of Nogo
by reactive astrocytes after lesion [54].

The predicted topology of Nogo-A is such that the two
transmembrane domains situated in the C-terminus (the
RTN domain), leave a 66-aminoacid loop into the luminal or
extracellular space, while the N-terminus and C-terminus re-
main on the cytosolic side [16, 28, 68]. This loop, called
Nogo-66, induces growth-cone collapse and is exposed ex-
tracellularly, at least in oligodendrocytes [28]. This implies
that the three Nogo isoforms have potentially inhibitory prop-
erties. A second inhibitory domain, situated in the Nogo-A
specific region (NiG), inhibits neurite outgrowth and pre-
vents fibroblast spreading [28]. It was hypothesized that this
domain could remain intracellular and be released to extra-
cellular space after disruption of the membrane in case of in-
jury. However, NiG has been detected at the cell surface of
living oligodendrocytes [63], indicating a second topology in
which both Nogo-A active domains were exposed at the sur-
face. Recently, a third inhibitory domain for Nogo was de-
scribed. This domain is located at the N-terminus of Nogo-
A/B and can inhibit 3T3 cell spreading, but has little effect on
neurons [63]. Therefore, current research is focused on the
characterization of the mechanisms involving Nogo-66 and
NiG activity.

As well as its function as a cell-surface signaling mole-
cule, Nogo might have intracellular functions like the other
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Figure 1. Structure of Nogo proteins, MAG, OMgp and NgR. The dif-
ferent domains are represented. Abbreviations: LRR, leucine-reach
repeat; LRR-CT, leucine-reach repeat C-terminal; LRR-NT, leucine-
reach repeat N-terminal; TM, transmembrane domain.

499-594 Contributions Vol. 2-4  11/05/05  09:33  Página 500



reticulon proteins [55, 62]. Cell-surface Nogo accounts for
only 1% of total cellular protein. Various intracellular proteins
interact with Nogo, such as a novel mitochondrial protein,
designated NIMP, which interacts with Nogo-66 in neurons
[33], and alpha-tubulin and myelin basic protein in oligoden-
drocytes [86]. In addition, Nogo-B is proapoptotic [45].
Since Nogo-B is a short form of Nogo-A, lacking the NiG do-
main, Nogo-A may bind to the same molecules and have a
function related to apoptosis. A recent study reports that
oligodendrocytic Nogo-A could interact in trans with axonal
contactin-associated protein (Caspr) at CNS paranodes,
and help modulate axon-glial junction architecture [55, 59].

Myelin-associated glycoprotein (MAG)
The myelin-associated glycoprotein (MAG)/Singlec-4a is ex-
pressed by both oligodendrocytes and Schwann cells (CNS
and peripheral myelin) [50], and participates in the formation
and maintenance of the myelin sheath [49]. MAG has also
been suggested as an early mediatorof axo-glial interactions
[75]. Examination of MAG’s inhibitory properties showed that
it promoted the outgrowth of young neurons (neonatal DRG),
but inhibited adult DRG neurites (and other neuronal popula-
tions) [51, 57]. This switch in neuronal responsiveness to
MAG (and myelin in general) during development may be de-
termined by changes in the endogenous levels of cAMP [13].
Inhibition of Xenopus growth cones by soluble MAG can be
converted to attraction by adding cAMP agonist to the culture
media [85], and artificial rising of endogenous cAMP blocks
both MAG and myelin inhibition [12]. 

There are two isoforms of MAG formed as a result of alter-
native splicing [74], S-MAG and L-MAG, of 67 and 71kDa re-
spectively in SDS-PAGE after deglycosylation. Both proteins
share an N-terminus extracellular region formed by five IgG-
like domains and a transmembrane domain, but differ in
their intracellular domains (Figure 1). MAG is expressed by
oligodendrocytes and Schwann cells but not by neurons
[50]. L-MAG is the main isoform expressed in developing
CNS, whereas S-MAG is the predominant isoform in adult
CNS [67]. MAG has been reported to bind to gangliosides
GD1a and GT1b, proposed as MAG receptors [89, 93].
However, the implication of gangliosids in MAG-mediated
neurite outgrowth inhibition is not clear, and two related pro-
teins have been found to be functional receptors for MAG:
NgR and NgR2 [92, 100]. While the binding to the first
seems to be sialic acid-independent, at least in non-neu-
ronal cells, NgR2 has been recently identified as a high-
affinity and sialic acid-dependent neuronal receptor for
MAG [92]. Soluble MAG is released from damaged white
matter, inhibiting neurite outgrowth [87, 88], and a soluble
chimerical form of MAG (MAG-Fc) inhibited neurite out-
growth of P6 DRG neurons [88]. These observations sug-
gest that MAG could be the main inhibitory diffusible mole-
cule released after injury in the CNS.

Oligodendrocyte-myelin glycoprotein (OMgp)
The oligodendrocyte myelin glycoprotein (OMgp) is a GPI-
anchored leucine-reach repeat (LRR) protein which has
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Figure 2. Pattern of expression of nogo and Nogo-A in the CNS.  Low
power view of the hippocampal region illustrating the distribution of
nogo mRNA and Nogo-A protein. A) At P21, nogo mRNA is located in
the pyramidal layer of the hippocampus proper and, to a lesser ex-
tent, in the granule cell layer of the dentate gyrus. B) In the cerebel-
lum, nogo expression is restricted to the Purkinje cell layer. C) Im-
munolocalization of Nogo-A in the hippocampus. At P21, Nogo-A
immunostaining is high in the pyramidal layer of the hippocampus
proper and also present, but lower, in the granule cell layer of the
dentate gyrus. A conspicuous band of immunoreactivity is located in
the inner molecular layer of the dentate gyrus. D) Nogo-A protein lev-
el is high in the molecular layer of the cerebellum, corresponding to
the dendritic trees of the Purkinje cells. E) High-magnification pho-
tomicrographs to illustrate details of Nogo-A-immunoreactivity in the
CA3 region. Neurons showed multipolar shapes in the stratum radia-
tum and pyramidal layer (arrowhead). Small immunoreactive cells
with multipolar morphologies were also observed in the pyramidal
layer (arrow). F) nogo mRNA pattern in the cerebral cortex. The dif-
ferent cortical layers are indicated. G) Nogo-A is located in the in the
bodies and processes of the principal neurons in the cortex. Some
oligodendrocytes are also immunostained. Scale bars: A= 200 µm,
pertains to C; B= 100 µm, pertains to D; E= 50 µm= F= 500 µm, per-
tains to G. Abbreviations: CA1-3, hippocampal fields; DG, dentate
gyrus; GCL, granular cell layer; GL, granular layer; H, hilus; ML, mol-
ecular layer; PCL, Purkinje cell layer; SLM; stratum lacunosum-mole-
culare; SO, stratum oriens; SP, stratum pyramidale, SR, stratum ra-
diatum; WM, white matter.
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been recently found to inhibit neurite outgrowth in culture
[43, 99]. OMgp has 440 aa and migrates in SDS-PAGE gels
as a 110-120 kDa band. It is linked by a GPI group to the
cell membrane, and lacks transmembrane and intracellular
domains. Both mouse and human OMgp have a series of
leucine-reach repeats, common in binding proteins (Figu-
re 1) [43]. Deletion mutagenesis shows that OMgp inhibito-
ry activity is independent of the GPI anchor and that dele-
tions in the LRR domains cause loss of function [95].
Screening an expression library, Wang et al. [99] identified
the Nogo receptor (NgR) as a high-affinity OMgp-binding
protein. Additional experiments demonstrated that NgR not
only binds OMgp, but is also the functional receptor [20,
48, 99].

OMgp was initially described in myelinating oligodendro-
cytes, but was subsequently found to be expressed pre-
dominantly by neurons [30]. OMgp is present in large pro-
jection neurons such as the pyramidal cells of the
hippocampus, the Purkinje cells of the cerebellum, mo-
toneurons in the brainstem, and anterior horn cells of the
spinal cord [30]. During development, OMgp expression is
upregulated, and has a peak of expression in the late
stages of myelination [96].

It is interesting that Nogo-A, OMgp and NgR are ex-
pressed by neurons. Neuronal OMgp could associate with
NgR on the surface of neurons, although this possibility has
not yet been tested. OMgp is a potent inhibitor of axonal
growth in vitro, but its normal physiological role in the CNS
remains unclear.

The Nogo receptor

The Nogo receptor was first identified as the Nogo-66 recep-
tor, but has turned out to be the common receptor for the
three myelin-associated inhibitors discovered so far (see
above and Figure 3).  Fournier et al. obtained a cDNA in a
screening for alkaline-phosphatase (AP) Nogo-66 interact-
ing proteins, which encoded a GPI-linked protein that was
called the Nogo-66 receptor (NgR) [25]. Cleavage of GPI-
linked proteins from axonal surface turned neurons insensi-
tive to Nogo-66, and NgR expression was sufficient to inhibit
unresponsive neurons in contact with Nogo-66.

Another screening, using AP-NgR fusion protein, demon-
strated that NgR can self-associate and, surprisingly, also
binds MAG [48]. A subsequent study identified the ~80kDa
protein that immunoprecipitated with MAG as NgR, which
confirmed that NgR was MAG is functional receptor [20].
The third myelin-associated inhibitory protein, OMgp, was
also shown to be a ligand of NgR, and needed the receptor
to induce growth-cone collapse [99]. 

NgR is a 473 aa protein, detectable in SDS-PAGE as an
~80-85kDa band. This GPI-anchored protein contains eight
central LRRs flanked by a cysteine-rich C-terminus (LRR-
CT) and by a leucine-rich N-terminal domain (LRR-NT) (see
Figure 1) [25]. Different domain-deletion analyses were run
to identify the NgR domains involved in ligand binding or co-

receptor interaction, with conflicting results. Fournier et al.
[26] reported that all NgR domains (LRR-NT, LRR and LRR-
CT) are required for Nogo-66 binding. However, Wang et al.
[100] indicated that the LRR-CT domain was necessary and
sufficient to bind Nogo-66. A recent study provides evi-
dence that Nogo-66, like MAG and NgR itself, requires only
the LRR region of NgR to bind to the receptor at the cell sur-
face [4]. Both the LRR domains and the more carboxyl re-
gions (LRR-CT) are necessary for association with p75 and
OMgp [100]. In addition, it is not well established whether
MAG and Nogo-66 compete for binding with NgR [20, 48].
More studies are needed to clarify which NgR domains are
needed for the interactions with the three ligands or cor-
receptors, and whether these bindings compete with each
other or not.

NgR mRNA is expressed in adults mainly through cere-
bral cortical neurons, cerebellar Purkinje and granule cells,
pontine nucleus, deep nuclei, habenular nucleus and hip-
pocampal neurons [25, 36, 39]. It is pertinent that adult
spinal cord downregulates its levels of NgR mRNA, which
become barely detectable in both mice and humans [39].
This absence of local expression refers to interneuron so-
mas, since cortical projection neurons do express NgR
mRNA, which is detectable in the cortical layers together
with the protein [39, 101]. Similarly, DRG cells also downreg-
ulate NgR mRNA expression in the adult [36, 39]. Some re-
gions, such as the striatum or medial septal nucleus, do not
express NgR at any developmental stage [36, 39]. 

Neuronal responsiveness to Nogo-A seems to depend
on the developmental stage [13, 54]. Embryonic rat dorsal
root ganglion and chick retinal ganglion cells are only a lit-
tle sensitive to Nogo-A, but their adult counterparts col-
lapse and increase intracellular calcium levels when ex-
posed to this inhibitor [2]. These experiments show that
neuronal sensitivity to Nogo-A is acquired around the time
of myelination, which reinforces the hypothesis that Nogo-A
has some function during development unrelated with its in-
hibition via NgR. 

The coreceptors

Before the cloning of NgR, Yamashita et al. reported that
p75, the low-affinity neurotrophin receptor, is necessary to
the inhibition of neurite outgrowth by MAG, and that cerebel-
lar and spinal sensory neurons from p75-deficient mice were
unresponsive to MAG [105]. They also indicated that MAG’s
inhibition is mediated by an activation of the GTPase RhoA in
the presence of p75 [105]. Subsequently, p75 was shown to
be the coreceptor of NgR and to mediate the signal trans-
duction of Nogo, MAG and OMpg [100, 104] (Figure 3).  In
accordance with this, axonal outgrowth is enhanced in the
myelinated portions of the CNS in p75 mutant mice [98].
Priming of neurons with neurotrophins has been reported to
reduce myelin and MAG inhibition [12], which could be due
to coreceptor competition between Trks and NgR as well as
to changes in intracellular cAMP levels.
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p75 interacts with NGF and modulates the activity of Trk
receptors [18]. It colocatizes with NgR in embryonic neurons
[104], but its expression is downregulated during develop-
ment and adult neurons express background levels of it. It
has been recently reported that Troy, a NTF receptor family
member, can replace p75 in the adult CNS and activate
RhoA in response to myelin-associated inhibitors [65, 81].
Lastly, a LRR protein named Lingo-1 has been shown to
form a complex with NgR and either p75 or Troy, and be
necessary for the inhibition to occur [53]. 

Other receptors

The discovery of NgR as a central point of myelin-mediated
inhibition could lead us to think that a single receptor is re-
sponsible for the failure of CNS axons to regenerate. Howev-
er, we should be cautious with these observations. As we will
discuss at the end of this review, myelin is not the only
source of inhibition in the adult CNS, and even for myelin,
more than one receptor seems to be involved. For instance,
the neuronal receptor for NiG (Nogo-A specific domain) has
yet to be identified. NiG not only inhibits neuronal outgrowth,
but also prevents non-neuronal cells (e.g. fibroblasts)
spreading, so its receptor must be widely expressed [25, 28,
60]. Oertle et al. found NiG is exposed at the surface in ma-
ture oligodendrocytes and can bind to responsive cells and
brain cortical membranes, which indicates the existence of
the unknown receptor [63]. 

In addition, MAG binds to NgR2, a receptor structurally
related with NgR [92]. Niederost et al. have also reported
that phospholipase treatment does not completely block
the inhibitory effects of MAG on cerebellar granule cells,
suggesting that no GPI-linked protein is needed for MAG
mediated inhibition [60], and some other receptors, as the
gangliosides GT1b and GD1a could act as MAG receptors
[87, 93]. 

Intracellular signaling

It was suggested that inhibition of axonal outgrowth by Nogo-
A and MAG was dependent on Ca2+ signaling [1, 104]. How-
ever, it remains unclear how cytosolic calcium participates in
NgR signal transduction. GTPases are well characterized as
mediators of growthcone collapse. p75 modulates RhoA ac-
tivity after neurotrophin binding [105] and also modulates
GTPase activity in response to NgR ligands [102]. Yamashita
and Tohyama described how p75 releases RhoA from Rho-
GDI (which prevents RhoA activation) after NgR binding to
Nogo-66 and MAG, allowing RhoA to become activated,
which promotes growth-cone collapse [106]. Consistent with
this, Nogo-A and MAG signaling involves the inactivation of
Rac1 [60]. Both GTPases have antagonistic effects and are
involved in the axonal guidance cues mediated by other mol-
ecules such as Ephrin A1, sema3A and Netrin [19]. However,
the inhibition of ROCK, a downstream effector of Rho, blocks

Nogo and MAG activities. Thus, the NgR intracellular path-
way could involve the activation of LIM kinase (a target of
ROCK), which inactivates the protein cofilin and promotes
growth-cone collapse (Figure 3) [60]. 

As previously mentioned in this review, treatment with
neurotrophins blocks inhibition caused by MAG and myelin
[12]. This interaction has been attributed to an elevation of
cAMP by neurotrophins. Artificial elevation of cAMP with
analogs also blocks inhibition by myelin and is dependent
on PKA activation [12]. Therefore, the activation of PKA inter-
feres with some step in the myelin-signaling pathway. A sec-
ond important kinase regulating myelin-induced inhibition is
PKC [31, 84], whose blockade in vivo, similarly to elevation
of cAMP in vivo, promotes spinal cord regeneration, proving
that interference with some elements of the NgR intracellular
pathway can be useful to try to promote axonal regeneration
[70, 84].
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Figure 3. Schematic representation of the proposed interactions be-
tween NgR and its ligands. Black arrows symbolize well established
interactions; grey arrows correspond to supposed interactions.
Nogo-66, MAG and OMpg bind to NgR, and its association with p75
activates Rho and ROCK, leading to the growth cone collapse. In
addition, interaction of MAG with gangliosids may facilitate NgR-
p75 binding. The putative neuronal NiG receptor and the subse-
quent activation of Rho and inhibiton of Rac by NiG binding are also
represented in this figure. Although the complete receptor complex
is formed by NgR, p75 or Troy and Lingo-1, only p75 has been rep-
resented. Abbreviations: MAG, myelin-associated glycoprotein;
NgR, Nogo receptor; Oligo., oligodendrocyte; OMgp, oligodendro-
cyte myelin glycoprotein; ROCK, Rho-kinase.
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Functional studies in KO mice

In vitro outgrowth assays and in vivo neutralizing experi-
ments show that the independent elimination of any of the
NgR ligands, NgR itself or even p75, substantially improves
axonal regeneration. MAG and p75 mutant mice were gen-
erated and described before the discovery of their involve-
ment in myelin-mediated inhibition. Recently, three groups
have independently produced Nogo deficient mice. How-
ever, Nogo and MAG knockout mice lack just one of the
NgR ligands, and the p75-deficient mice phenotype is af-
fected by alterations in neurotrophin signaling. Thus, the
study of NgR knockout mice could provide us with crucial
information about the role of myelin-associated inhibition in
the failure of injured CNS axons to regrow. Unfortunately,
the OMgp knockout mice phenotype has not yet been re-
ported. 

Nogo knockout mice
Three independent groups have generated four lines of
mice lacking just Nogo-A, both Nogo-A and Nogo-B and a
knockout line lacking Nogo-A, –B and –C [41, 83, 110] (see
Table 1). Contrary to what was expected from in vitro experi-
ments and antibody blockage of Nogo in vivo, there was no
clear improvement in the regenerative capacities of Nogo-
deficient mice. The first mutant mice, generated by
Schwab’s group, lack Nogo-A expression due to gene tar-
geting of exon 3 (which encodes the Nogo-A-specific cen-
tral domain) [83]. In these mice, a compensatory upregula-
tion of nogo-B could be observed in oligodendrocytes (see
Table 1). Strittmatter’s group produced Nogo-A/B mutant
mice by inserting a retroviral trapping vector into the Nogo
gene, thus disrupting both Nogo-A and Nogo-B, but not
Nogo-C [41]. A second Nogo-A/B knockout line was gener-
ated by the Tessier-Lavigne group’s deletion of the amino-
terminal genomic fragment that includes the entire exon 1,

shared by Nogo-A and –B, mutant mice had no behavioral
alteration or differences in their brain histology, although lit-
tle information about their CNS anatomy was reported. Cor-
roborative in vitro assays demonstrated that Nogo was a
powerful inhibitor of axonal growth, as the inhibitory proper-
ties of myelin extracted from all the different Nogo mutant
mice were very low. Oligodendrocytes of Nogo mutant mice
were indistinguishable from wild-type oligodendrocytes and
myelin structure was not altered, indicating that the pres-
ence of Nogo in myelin is not related to the maintenance of
the myelin sheath.

Blockage of Nogo-A in vivo with antibodies after spinal
cord injury has been seen to enhance the regeneration of
the descending corticospinal tract (CST) [8, 9], but failed to
promote regeneration of ascending sensory axons [64].
Therefore, the regenerative capacities of Nogo-deficient
mice were determined by examination of the regeneration
of CST axons after dorsal hemisection of the spinal cord.
After spinal cord lesion, the CST axons of the young adult
Nogo-A/B mutant mice generated by Strittmatter’s group
sprouted extensively and regenerated into distant cord
segments, improving the functional recovery of the animals
[41]. However, it should be emphasized that this increased
regeneration was restricted to young animals, suggesting
that Nogo was not one of the inhibitors in older animals. Si-
monen et al. obtained much more modest results with the
Nogo-A transgenic line [83]: their test was qualitatively
comparable with the previous example, but quantitatively
lower. Though the upregulation of Nogo-B in these mice
could attenuate the deficiency of Nogo-A, Nogo-B was not
present on the surface of oligodendrocytes and there was
little in vitro neurite outgrowth inhibitory activity of central
myelin from these mutant mice, which did not support a
compensatory inhibitory effect of Nogo-B. The third group
did not report evidence that any of their Nogo mutant mice
(Nogo-A/B knockout and the Nogo-A/B/C deficient line) in-
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Table 1. Nogo-deficient mice characteristics.
Summary of the main characteristic presented by the different Nogo-deficient mice. Groups that generated the different lines and mice geno-
types are indicated. Y and N refer to the presence or absence of the characteristic indicated.

Schwab Strittmatter Tessier-Lavigne Tessier-Lavigne
groupa groupb groupc groupd

Nogo A Nogo A/B Nogo A/B Nogo A/B/C

Changes is viability, fertility or behavior N N N N

Changes in CNS anatomy N N N N

Changes in myelin structure N N N N

Nogo-B expression upregulated – – –

Nogo-C expression unchanged unchanged not tested no functional

Myelin inhibitory activity in vitro N N N N

Enhanced regeneration in vivo modest Ye N N

a Simonen et al. 2003 [83].
b Kim et al. 2003 [41].
c Zheng et al. 2003 [110].
d Nogo-A/B/C knockout line was originally lethal, except for one mouse, carrying a mutation that lead to the expression of a non functional Nogo-C (see text for more

details).
e only young mice.
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creased regeneration or sprouting. This could indicate that
Nogo-A/B contributes to inhibition, but their absence is not
enough to permit axonal regeneration. These results are
very surprising. As stated above, in vivo delivery of anti-
bodies against Nogo-A not only enhanced axonal regener-
ation, but permitted the regeneration and sprouting of CST
axons in the same model that was employed for the char-
acterization of mutant mice. Differences in genetic back-
ground, compensatory changes or alteration of other loci
as a result of gene-trap insertion might explain these dis-
crepancies. Further studies are needed to determine the
causes of the variations in the mutant mice and clarify the
function of Nogo in the CNS. 

Two additional Nogo mutant mice generated give us im-
portant information. These mice expressed Nogo-A or Nogo-
C in Schwann peripheral nerve cells [41, 69]. Axonal regen-
eration after sciatic nerve lesion in these mutant mice was
delayed or inhibited, demonstrating that Nogo-66 has a
function as an inhibitor of axonal regeneration in vivo and is
exposed at the cellular surface. 

MAG
The first studies of MAG pointed to a relationship of this
protein with the formation and maintenance of the myelin
sheath, and MAG-deficient mice were generated to verify
these roles. In the CNS of MAG-deficient mice, the integrity
of myelin is altered, the initiation of myelination is delayed,
and the formation of morphologically intact myelin has ab-
normalities [56, 75]. However, when MAG was found to be
a potent inhibitor of axonal growth in vitro [51, 57], the re-
generative capacities of MAG-deficient mice were tested.
Axonal regeneration in the injured optic nerve and corti-
cospinal tract in MAG-deficient mice either was no different
from in wild-type animals [5] or enhanced axon regenera-
tion only a little [44]. In addition, myelin from MAG-mutant
mice was a potent inhibitor of axonal growth in vitro [44,
61], indicating that there had to be other axonal growth in-
hibitors associated with myelin, as was subsequently
shown. 

The lack of axonal regeneration in MAG-deficient mice,
together with the changes observed in myelin, indicated that
MAG is involved in the formation and maintenance of myelin
and did not support MAG as a functional inhibitor of axonal
growth in vivo. However, the number of regenerating axons
after sciatic nerve lesion of C57BL/Wlds mice (slow-degen-
erating mutant mice) was doubled if the MAG gene was
eliminated [76], providing some evidence that MAG actually
can inhibit axonal growth in vivo. 

p75
Whereas in Nogo-A and MAG knockout mice, just one of the
NgR ligands is missing and their regenerative capacities are
conditioned by the presence of the other two NgR ligands; in
p75-deficient mice a major part of the NgR signaling system
is impaired. Neurotrophin signaling is also affected in these
animals, conditioning the final phenotype, however, neither
Lingo-1 nor Troy deficient mice regenerative potential has

been reported, and p75 knockout mice phenotype is the
only data available. 

In p75 knockout mice, the lack of the receptor affects var-
ious neurotrophic features, such as neuronal size, neuro-
transmitter synthesis and target innervation [107]. However,
there are not many reports about CNS regeneration in these
animals. Adult sympathetic neurons from p75-deficient mice
can grow in CNS myelin, which inhibits wild-type mice neu-
rons [98]. This provides the best evidence for p75’s function
in axonal growth inhibition in vivo, although it is not clear
whether sympathetic neurons express NgR. In vitro, the first
experiments demonstrating that p75 was necessary for
MAG-dependent inhibition also showed that DRG and cere-
bellar neurons from p75 knockout mice were not inhibited by
MAG [105]. Subsequently, when the interaction of p75 with
NgR was described, the sensitivity of p75 knockout mice
neurons to Nogo and OMgp was also tested, with the finding
that they are no longer responsive to myelin or to the known
NgR ligands [100]. Recently, the regenerative potential of
p75-deficient mice after spinal cord compression injury was
tested, but functional recovery in these animals increased
no more than in wildtype controls [21].  To develop our un-
derstanding of the normal role of p75 in growth inhibition,
additional experiments should be performed with p75-
knockout mice (such as unilateral pyramidotomy, which
gives good results with Nogo and NgR knockout mice). 

NgR
During the final stages of writing this review, the first informa-
tion about NgR knockout mice was made public [42, 111].
Two lines of NgR deficient mice have been generated by in-
dependent groups, and a different regenerative potential
has been reported for them. Cultured neurons from NgR
knockout mice generated by Dr. Strittmatter’s lab had low
sensitivity to myelin in vitro, and the functional recovery of the
knockout mice after mid-thoracic dorsal hemisection or com-
plete transection of the spinal cord, improved significantly,
although corticospinal fibers did not regenerate [42]. In
sharp contrast with this report, neurons from the NgR knock-
out mice generated by Dr. Tessier-Lavigne’s lab are inhibited
by myelin (and by purified Nogo-66) in the same extent as
wild type neurons, and regeneration after spinal cord hemi-
section was not improved in vivo [111]. Together, these re-
ports indicate that NgR is only partially responsible for limit-
ing axonal regeneration in the adult CNS. 

Therapeutic approaches

NgR and its three ligands are central to restricting axonal re-
generation, and represent a promising target for new thera-
pies. The blockage of Nogo inhibitory domains with both an-
tibodies and peptides in vivo has resulted in extensive
regeneration. In addition, therapeutic vaccination against
myelin has achieved encouraging results. This indicates that
selective targeting of myelin inhibitors could be a therapeu-
tic tool.
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Blocking Nogo in vivo

a) IN-1 
The monoclonal antibody IN-1 was used in many in vitro and
in vivo studies prior to the molecular characterization of the
Nogo-A antigen. Now we know that IN-1 recognizes the cen-
tral domain of Nogo-A (exon 3) [24], a region not shared with
Nogo-B, which was initially proposed to be the protein NI-35
recognized by IN-1. Since Nogo-B lacks the IN-1 epitope,
NI-35 is more likely to correspond to a proteolytic fragment
of Nogo-A. 

Most of the experiments in vivo with IN-1 focused on the
corticospinal tract (CST). The cortical neurons express high
levels of both NgR and Nogo-A [37]. The first studies, by
Schnell and Schwab (see Table 2), used IN-1-producing hy-
bridomas, implanted intracerebrally, to try to promote axonal
regeneration after lesion of the corticospinal tract [77, 78].
Treatment with IN-1 increased the length of the CST axons,
allowing long-distance regeneration. This length was en-
hanced by NT-3 treatment and the regenerating axons were
mainly found in the CST [79]. Subsequently, IN-1 treatment
improved not only regeneration but also functional recovery
[8, 72, 94]. However, regenerating axons grew in ectopic ar-

eas rather than in the former CST, and avoided the lesion
site, extending through the intact tissue. In fact, compen-
satory sprouting from the uninjured fiber tract was found.
Complete transections, in which regeneration could only oc-
cur if the lesion site was crossed, would indicate whether the
functional recovery was due to regenerating axons or to the
sprouting of collateral, intact axons. However, this kind of le-
sion has not been tested in experiments with IN-1.

Along with the CST axons, other types of CNS axons re-
spond to IN-1 treatments (see Table 2). Treatment with IN-1
enhances the regeneration of the rubrospinal [51], corticofu-
gal [102, 109], and corticostriatal tract [40] (see Table 2). In
all these cases, IN-1 induced compensatory sprouting
across the spinal cord midline, improving functional recov-
ery. Other fibers such as septohippocampal axons [11], the
auditory nerve [89] and the cortico-efferent projections [66]
are other examples of fiber tracts that respond to IN-1 treat-
ment. However, administration of IN-1 failed to promote the
regeneration of ascending sensory axons across a peripher-
al nerve bridge back into the adult spinal cord [64]. This ex-
periment suggests that inhibitors other than Nogo-A prevent
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Table 2. IN-1 in vivo treatments.
Summary of the main in vivo experiments performed with IN-1 and their characteristics. References are in chronologic order. “yes” indicates
functional recovery. “compensatory sprouting” represents inervation from the unlesioned hemisphere 

Reference Type of lesion Neuronal population Treatment Anatomical Regeneration Functional
studied regeneration

[77-79] Bilateral Pyramid. CST
IN-1 secreting hybridoma

Long-distance regeneration Yes
intracerebral

cholinergic human amnion extracellular matrix
Moderate Non tested[11] Fimbria/fornix

Septohippocampal tract material containing NGF and NI-1

[94] Chronic injury CST CST Delayed IN-1 and NT3 treatment moderate Slight

[8, 90, Unilateral
CST

IN-1 secreting hybridoma cells Compensatory sprouting
Yes

109] pyramidotomy into the hippocampal formation Long-distance regeneration

[40] Unilateral aspiration
Corticostriatal tract

IN-1 secreting hybridoma cells 
Compensatory sprouting Yes

lesion into the lesion cavity

[9] Unilateral pyramidotomy CST IN-1 Fab into the injury Long-distance regeneration Non tested

[64] Nerve graft paradigm* Sensory axons
IN-1 secreting hybridoma cells into

None Yes
the cerebral cortex or thoracic cord

IN-1 secreting hybridoma cells
Compensatory sprouting Non tested

[6] Unilateral pyramidotomy Corticopontine tract into the contralateral cerebral 
cortex or hippocampus

[61-62] Bilateral Pyramid.
rubrospinal tract IN-1 secreting hlybridoma cells

Compensatory sprouting Yes
and CST into the hippocampal formation

IN-1 secreting hybridoma cells 
[3] Unilat eral pyramidotomy CST

into the hippocampal formation
Compensatory sprouting Non tested

[89] Section of audirory nerve
Cochlear

nerve fibers
IN-1 Fab intrathecal Long-distance regeneration Yes

[66] Ischemic lesion Cortical neurons IN-1 secreting hybridoma cells Compensatory sprouting Yes
posterior to the site

IN-1 secreting hybridoma cells functional reorganization of
Yes[22] Unilateral SMC lesion sensorimotor cortex

into the hippocampal formation the intact motor cortex

Abbreviations : CST: corticospinal tract;  Pyramid., Pyramidotomy (lesion of the corticospinal tract); SMC, sensorimotor cortex;
* conditioning lesion of the peripheral proyection of the sensory neurons prior to implantation of the nerve graftin the spinal cord.
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the regeneration of the central processes of DRG neurons
(from the graft) into the spinal cord.

As commented above, IN-1 antibody enhances the
sprouting of both injured and intact neurons and increases
the expression of growth-associated genes. A recent study
aimed to determine the effects of IN-1 on the uninjured hemi-
sphere after unilateral sensorimotor cortex (SMC) lesion
[22]. It showed intact neurons sprouting into the injured
hemisphere and innervated deafferented subcortical tar-
gets, leading to an increase in functional recovery. In similar
experiments reporting functional recovery after IN-1 treat-
ment, this was attributed to the plasticity or sprouting in-
duced by the antibody rather than to true regeneration, as
observed in cortical projection neurons [3, 40]. In uninjured
animals, IN-1 promotes sprouting of corticospinal axons,
which grow into abnormal territories [3]. In addition, unin-
jured Purkinje cells sprout within cortical grey matter when
treated with IN-1 [10]. Since sprouting is a necessary step
prior to regeneration, these data suggest that IN-1 may dis-
turb some signals controlling this initial process (such as
NiG). Afterwards, induced axonal sprouting could lead to re-
generation if axons are provided with the necessary signals
to regrow in their previous direction. Supporting this theory,
IN-1 treatment has been reported as leading to an increase
in the expression levels of growth-associated genes, such
as GAP-43, in the spinal cord and Purkinje cells [3, 108]. In
addition, the transcription factors c-Jun and JunD and
NADPH diaphorase are upregulated after treatment with IN-
1 in both injured and intact Purkinje cells [108]. 

b) NEP1-40
IN-1 (both original and its recombinant Fab fragment) has
very low affinity and limited specificity for Nogo. This has
hampered the use of the monoclonal antibody. An im-
proved therapeutic agent has been developed to provide a
specific blockage of Nogo functions: the NEP1-40 peptide
[29]. The competitive agonistic peptide of NgR is derived
from amino-terminal fragments of Nogo-66 (corresponding
to residues 1-40 of the Nogo-66 loop) and inhibits its bind-
ing to NgR [29]. NEP1-40 does not compete with MAG [48],
indicating that MAG and Nogo-66 bind to different NgR do-
mains.

Treatment with NEP1-40 promoted significant regenera-
tion of the CST in rats with mid-thoracic spinal cord hemi-
section and increased their functional recovery [29]. More-
over, NEP1-40 administration delayed for up to one week
was as effective as immediate treatment [46]. Systemic
therapy with subcutaneous NEP1-40 improved sprouting of
serotonergic fibers, upregulated axonal growth protein
SPRR1A levels and permitted extensive growth of corti-
cospinal axons together with synapse re-formation after
thoracic spinal cord injury [46]. These data indicate the
central functions of Nogo-66 and NgR in limiting axonal re-
generation after spinal cord injury and suggest that NEP1-
40 is a therapeutic agent.

In addition to antibodies and peptides, a soluble func-
tion-blocking NgR ectodomain (which binds to Nogo-A,

MAG and OMgp and prevents them from binding to their
receptors) has been administered to spinal cord injured
rats obtaining increased axon growth and functional recov-
ery [47].

Vaccination
Vaccination against myelin-inhibitory antigens is a recent
therapeutic approach to promote axonal regeneration. Stim-
ulation of the immune system to produce antibodies against
myelin-associated inhibitors resulted in a strong regenera-
tion of the CST after dorsal hemisection [34]. Subsequently,
more precise vaccination against specific myelin compo-
nents, such as NgR ligands, was performed with similar re-
sults. Nogo-A antibody infusion 24 hours before lesion per-
mitted functional recovery in a stroke model [103]. After
partial crush injury, rats’ optic nerve recovery was signifi-
cantly promoted by post-traumatic immunization with a pep-
tide derived from Nogo-A [32], and long-distance axon re-
generation and sprouting of the corticospinal tract was seen
in myelin and Nogo-66/MAG immunized mice CST [82]. Cur-
rent studies are trying to make immunotherapy as effective
as possible and to minimize the risks of auto-immune dis-
eases in response to immunization [52].

Nogo, NgR ligands, and axonal regeneration

As many molecules are involved in the failure of CNS axons
to regenerate, varied therapeutic approaches are being
studied, most of them giving encouraging results. The spe-
cific blockage of Nogo and vaccination against myelin-asso-
ciated inhibitors are some of the strategies able to promote
neuronal regeneration. Other current strategies are the
degradation of CSPGs by Chondroitinase ABC [7], the use
of cyclic nucleotide analogs [58, 70], blockade of PKC [84]
and the inactivation of Rho GTPase [27]. However, interfer-
ing with Nogo signaling, for instance, could have disastrous
consequences if axonal inhibition is just a secondary func-
tion of the protein. Therefore, the characterization of the nor-
mal functions of myelin inhibitors will determine the viability
of the blockage of NgR ligands to promote regeneration.
Even if the main role of these proteins is related to regenera-
tion, as inhibition of axonal sprouting, their blockage could
lead to uncontrolled sprouting of uninjured neurons and re-
sult in improper connections (with the consequent abnormal
functions). As p75 also has numerous functions, it would not
be a good target, and functions of Troy or Lingo-1 are un-
known. With the current knowledge about the role of myelin
in preventing regeneration (summarized in this review), the
use of NgR antagonists seems to be the most promising,
and cautious, therapeutic tool. However, fully characteriza-
tion of NgR-deficient mice will be needed to clarify the con-
tribution of myelin to regenerative failure and allow us to
evaluate the therapeutic potential of interference with the
shared receptor.
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