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1. Introduction

Strong evidences suggest that all living organisms share a common ancestor and therefore, are related by
evolutionary relationships. These relationships are usually expressed in the form of a phylogenetic tree.

Nowadays there are more and more mathematicians and statisticians who collaborate with biologists in
order to solve the major problems of phylogenetics. Many different areas of mathematics, like statistics,
probability, algebra, combinatorics and numerical methods are involved in phylogenetic studies. Even more,
recently developed techniques from algebraic geometry have already been used in the study of phylogenetics.

The main goal of phylogenetic reconstruction is recovering the ancestral relationships among a group
of current species. In order to reconstruct phylogenetic trees it is necessary to model evolution adopting
a parametric statistic model. Using these models one is able to deduce polynomial relationships between
the parameters of the model, known as phylogenetic invariants. Mathematicians have recently begun to be
interested in the study of these polynomials and the geometry of the algebraic varieties that arise in this
setting. Furthermore, they have started to use some phylogenetic invariants called topology invariants to
reconstruct phylogenetic trees; see [4, 8].

The aim of this paper is to understand the relationship between phylogenetics and these algebraic
techniques to recover phylogenetic trees from real data. Our main goal is to study and to analyze the
characterizations of stochasticity of the points in the algebraic varieties mentioned above, and provided
in [5].

The paper is divided into two parts. In the first one, we explain basic concepts on phylogenetics that
are already known. We explain what phylogenetic trees are from the mathematical standpoint, we describe
the general Markov model, and we explain then what phylogenetic invariants and topology invariants are.
Moreover, we define joint distributions of a tree and its representation as a tensor. We will define some
operations among tensors that will be useful, and their meaning in terms of phylogenetic trees. This part
will be developed in Section 2. After that, in Section 3, we will revisit results related to the stochasticity of
the parameters of the general Markov model on a tree. One of these results, [5, Theorem 3.2.4], has been
restated and the proof rewritten since the statement of the original theorem is not completely correct. We
also provide a counterexample to show this; see Counterexample 3.8. Finally, in Theorem 3.11 we present
new topology invariants that can be used to design original methods for phylogenetic reconstruction; see [10]
for further details.

2. Preliminaries

2.1 Biological preliminaries

Phylogenetics is the study of relationships between different species or biological entities. It studies how
species evolve and where contemporary species come from. According to the theory of the biological
evolution developed by Darwin (s.XIX), all species of organisms evolve through the natural selection of
small variations that increase the individual’s ability to compete, survive, and reproduce. We can model
these specialization processes with phylogenetic trees. The nodes of these trees represent different species
and every branch is an evolutionary process between two species. The leaves of the tree are contemporary
species and the root of the tree is the common ancestor of all the species represented on the tree.
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Genetic information of each individual is encoded in the DNA of the nucleus of its cells, which is
composed of four different simpler units named nucleotides. According to the bases forming the nucleotides,
they are called adenine (A), cytosine (C), guanine (G) and thymine (T).

Heredity information in a genome is thought to be contained in genes. But DNA sequences of a same
gene may look quite different for different species. They contain similar parts but they can also contain
some other parts that can not be compared. For that reason the first problem is identifying which part
of DNA sequences of different species can be compared. This information is collected in an alignment.
A sequence alignment is a way of arranging the sequences of DNA to identify regions of similarity that
may be a consequence of functional, structural, or evolutionary relationships between the species. We can
represent an alignment with a table whose rows are DNA sequences of the species and whose columns
correspond to nucleotides evolved from the same nucleotide at the common ancestor of all the species in
the table. Alignments are used in many contexts, phylogenetics among them, to see relationships between
some species and to reconstruct the phylogenetic tree relating them.

One of the basic objects in a phylogenetic model is a tree T encoding the evolutionary relationships
among a given set of species. In this section we introduce some concepts that allow us to deal with these
phylogenetic trees following the approach in [2, 3, 6].

Definition 2.1. A tree T is a connected graph with no cycles. The degree of a vertex is the number of
edges incident to it. The vertices of degree 1 are called leaves and the set of leaves of T is denoted by
L(T ). All the other vertices, which have degree at least 2, are interior nodes and are designated by the
set Int(T ). E (T ) is the set of the edges of the tree. If all nodes in Int(T ) have degree 3, then T is called
a trivalent tree. A tree is called a rooted tree if one vertex has been labelled as “root”, and the edges
are oriented away from it. A phylogenetic tree is a pair (T , φ), where T is a tree and φ : X → L(T ) is
a one-to-one correspondence between the set of leaves and a finite set of labels denoted be X . The tree
topology of a phylogenetic tree is the topology of the tree as a labelled graph.

In a phylogenetic tree, the set X represents a set of living species and the tree T shows the ancestral
relationships among them. Every edge represents an evolutionary process between two species and if it is
rooted, then the root represents the common ancestor to the set of species X . For our purposes, usually
X will be taken as the set {1, 2, ... , n}. Moreover, two phylogenetic trees T1 and T2, with the same set
of labels X at the leaves, have the same topology if there is a one-to-one correspondence ϕ between their
vertices respecting adjacency and leaf labelling. If r1, r2 are the roots of T1 and T2, respectively, then we
need to impose ϕ(r1) = r2.

Remark 2.2. For the rest of the paper, we denote by Tn the set of all possible tree topologies for n-leaf
unrooted trivalent trees. Note that n has to be greater or equal than 3 (|T3| = 1). We will denote the
three possible topologies of T4 by T12|34, T13|24, and T14|23; see left hand side of Figure 1.

2.2 Evolutionary models

Evolution is usually modeled adopting a parametric statistical model. That is, evolution is assumed to be
a stochastic process, in which nucleotides mutate randomly over time according to certain probabilities.
Moreover we assume that DNA substitutions occur randomly and the nucleotides observed in the DNA
sequences are independent and identically distributed.

We associate a discrete random variable Xi to each node i of T such that Xi can take κ different
states. We denote by K this set of states. Usually K is the set of the four nucleotides in DNA, which are
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Figure 1: Left: the three topologies of T4, say T12|34, T13|24, and T14|23. Right: a Markov process on a
rooted 4-leaf tree given by a distribution vector π and transition matrices {M1, ... , M6}.

denoted by their first letter, so K = {A, C, G, T} and κ = 4. Since DNA sequences of the contemporary
species are known, we say that random variables at the leaves are observed. However, we do not have any
information about the ancestral species, that is why random variables at the interior nodes are hidden. For
a tree T with leaves 1, 2, ... , n, X = (X1, X2, ... , Xn) represents the joint distribution vector of the leaves.
Each column of an alignment is an observation of this vector of random variables.

Hereafter we introduce a Markov process in a rooted tree T . First, we define a vector π = (π1, ... ,πκ),
the distribution of Xr which is the random variable associated to the root r and satisfying that all entries
are nonnegative and

∑
i πi = 1. If K = {A, C, G, T}, we interpret these entries as the probabilities that

an arbitrary site in the DNA sequence at the root is occupied by the corresponding base. A second set
of parameters is associated to the evolutionary process that occurs in every edge. For each edge e we
associate a κ× κ matrix Me , called substitution or transition matrix.

Definition 2.3. A transition matrix is a κ × κ matrix Me associated to each edge of a phylogenetic
tree. Every entry is the conditional probability P(x |y , e) that a state y at the parent node of e had been
substituted by a state x at its child, during the evolutionary process along the edge e. Since each row
contains the probabilities of the κ possible changes that can occur in an evolutionary process, rows of Me

sum up to 1. These matrices Me are also called Markov matrices or row stochastic matrices.

We consider a Markov process on T given by π and the matrices {ME}e∈E(T ). In particular, the
substitutions on two adjacent branches at a node v are independent given the state at v .

The substitution probabilities on a given edge depend only on the state at the parent node. Besides,
we only have observations of the random variables at the leaves so, ours is a hidden Markov process.
According to the shape of the transition matrices different models are defined, but in this paper we focus
on the general Markov model, that is, transition matrices do not satisfy any other restriction.

Example 2.4. On the right hand side of Figure 1, a Markov process on a phylogenetic tree is represented.
The X ′i s are random variables associated to the leaves, the M ′i s are the transition matrices, and πr is the
root distribution. Under the general Markov model, we have 3 × 4 free parameters for each transition
matrix and 3 free parameters for the vector πr . Therefore, this model has 3 ·4 ·6 + 3 = 75 free parameters.

In what follows we describe how to compute the joint probability of observing states x1, x2, ... , xn at
the leaves according to the Markov process we have described.
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We denote by px1,...,xn the joint distribution at the leaves of a rooted phylogenetic tree T , px1,...,xn =
Prob(X1 = x1, X2 = x2, ... , Xn = xn). We define P as a κn-dimensional vector whose components are the
joint probabilities px1,...,xn , P = (px1,...,xn)x1,...,xn∈K.

Since the evolutionary processes follow a Markov process, they are independent and we can express
px1,...,xn in terms of the transition matrices,

px1,...,xn =
∑

xr ,(xv )v∈Int(T )

∏
e∈E(T )

Me(xa(e), xd(e)), (1)

where xr ∈ K is a state of the root, xa(e) ∈ K is a state of the parent node of the edge e, and xd(e) ∈ K is
the state of the descendant node of the edge e. If e is a terminal edge ending at the leaf i then xd(e) = xi .
Every entry of P can be seen as a polynomial with the parameters of the model M as variables.

Example 2.5. We compute now the joint distribution px1,x2,x3,x4 of the tree presented on the right hand
side of Figure 1. Using equation (1) we get

px1,x2,x3,x4 =
∑
xr∈K

∑
x5∈K

∑
x6∈K

πxr ·M5(xr , x5) ·M1(x5, x1) ·M2(x5, x2) ·M6(xr , x6) ·M3(x6, x3) ·M4(x6, x4).

2.3 Phylogenetic invariants and flattening

It is known that there exist many algebraic relations among the components of the joint distribution P;
see [4, 6, 7, 9].

Since components of P are polynomials in the model parameters, we can associate to the tree a
polynomial map ϕT : Cd → Cκn

mapping any d-tuple of parameters to a distribution vector of the κn

possible observations at the leaves of T . More precisely, we define the map

ϕT : Cd −→ Cκn

(π, {Me}e∈E(T )) 7→ P = (px1,x1,...,x1 , px1,x1,...,x2 , px1,x1,...,x3 , ... , pxκ,xκ,...,xκ),
(2)

where d is the number of free parameters of the model and each component px1,...,xn is expressed in terms
of the root distribution π and the transition matrices Me according to the expression (1).

Remark 2.6. Notice that, to read the parameters as probabilities, we should restrict to nonnegative real
numbers. Analogously, the points in the image of ϕT represent a joint distribution only if they lie in the
standard (κn − 1)-simplex. However, in order to use techniques from algebraic geometry, we abandon
temporally these restrictions and work over the complex field. We will consider complex parameters and
complex parametrization map in general, but we will refer to stochastic parameters to the ones coming
from the original probabilistic model (that is, all the components of π and the entries of the transition
matrices Mi are nonnegative).

We introduce now an algebraic variety in Cκn
which contains the set of image points of ϕT .

Definition 2.7. The phylogenetic variety associated to a tree T , denoted by V(T ), is the smallest algebraic
variety containing the image ImϕT .

Remark 2.8. The image set ImϕT is not, in general, an algebraic variety, but it defines a dense open subset
in V(T ) under Zariski topology. The ideal I (ImϕT ) of all polynomial relations in C[Px1,...,xn ] of the points
in Im(ϕT ) coincides with the ideal of the variety V(T ). We will denote it by I (T ). It can be proved that
V(T ) is independent from the node chosen as root in T ; see [1] for a complete proof.
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Definition 2.9. The polynomials in I (T ) are called phylogenetic invariants of T . If f is a polynomial
in IM(T ) that does not belong to I (T ′) for some other tree topology T ′ on n leaves, then f is called a
topology invariant of T .

Definition 2.10. Let A|B be a partition of the leaves of a tree T , that is A, B ⊆ L(T ), with |A|, |B| ≥ 2
such that L(T ) = A ∪ B and A ∩ B = ∅. Let X̃A = (xi )i∈A and X̃B = (xj)j∈B be the random variables
associated to A and B. Then X̃A and X̃B can take a := κ|A| and b := κ|B| states, respectively. Given
a vector P ∈ Cκn

we define the flattening FlattA|B(P) as the a × b matrix whose entries are the joint

distributions of all possible observations of X̃A and X̃B :

jsdhgakjaksjdhsdfhsfj lsjfdStates of X̃B

FlattA|B(P) =
States of

X̃A


pu1v1 pu1v2 · · · pu1vb

pu2v1 pu2v2 · · · pu2vb
...

...
. . .

...
puav1 puav2 · · · puavb

 .

This matrix allows us to state the following result, which gives us some topology invariants associated
to a 4-leaf tree.

Theorem 2.11 (Casanellas–Fernández-Sánchez, [8]). Let T be a tree, A|B a bipartition of L(T ) and
P = ϕT (π, {Me}e∈E(T )). Then the (κ + 1) × (κ + 1) minors of FlattA|B(P) vanish if A|B is induced by
removing an edge of T . Otherwise, FlattA|B(P) has rank ≥ κ2 for general P. Therefore, the (κ+1)×(κ+1)
minors of FlattA|B(P) are topology invariants for the tree T .

There is a more algebraic way of viewing the joint distribution at the leaves of a phylogenetic tree,
which will be really useful in this article.

Let W := Cκ be regarded as a vector space. We identify the canonical basis of W with the set K.

Then, the natural basis of W ⊗
n)
· · · ⊗W is {x1 ⊗ · · · ⊗ xn}x1,...,xn∈K. For instance, if K = {A, C, G, T}, the

natural basis of W ⊗W ⊗W is {A⊗ A⊗ A, A⊗ A⊗ C, ... , T⊗ T⊗ T}. Back to the description of the
joint distribution P = (px1,...,xn)x1,...,xn∈K in the phylogenetic framework, we can think of P as a n-tensor

in W ⊗
n)
· · · ⊗W whose components in the natural basis above are P = (px1,...,xn)x1,...,xn∈K:

P =
∑

x1,...,xn∈K
px1,...,xnx1 ⊗ · · · ⊗ xn.

Each factor in W ⊗
n)
· · · ⊗ W corresponds to one specie so, in order to make species apparent in this

tensor product, we denote it as W1 ⊗ · · · ⊗ Wn, where Wi = W for every i = 1, ... , n. If we view the
vector of joint distribution P as a tensor in W1 ⊗ · · · ⊗Wn then, keeping the notation of Definition 2.10,
the flattening FlattA|B(P) is the image of P via the isomorphism

W1 ⊗ · · · ⊗Wn
∼= Hom(

⊗
i∈A
Wi ,

⊗
j∈B
Wj) ∼= Ma×b(C),

P 7−→ FlattA|B(P)

where Ma×b(C) is the space of all a× b matrices with complex entries.
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Notation 2.12. For the rest of the paper, given a vector v ∈ Cκ, v(i) will be the i-th component of v
relative to the canonical basis {e1, ... , eκ} of Cκ, and we will write 1 for (1, ... , 1). Moreover, we will call

an n-tensor to the tensors P ∈ Cκ ⊗
n)
· · · ⊗ Cκ, and it will be convenient to write P(x1, ... , xn) for the

component px1,...,xn .

Definition 2.13. Given an n-tensor P, an integer i ∈ {1, ... , n} and a vector v ∈ Cκ, we define P ∗i v the
(n− 1)-tensor given by (P ∗i v)(j1, ... , ji−1, ji+1, ... , jn) =

∑κ
ji=1 v(ji )P(j1, ... , ji , ... , jn). We also define the

l -th slice of P in the i-th index by P···l ··· = P∗i el, The i -th marginalization of P is defined as P···+··· = P∗i 1.
Given a κ× κ matrix M, we define the n-tensor P ∗i M by

(P ∗i M)(j1, ... , jn) =
κ∑

l=1

P(j1, ... , ji−1, l , ji+1, ... , jn)M(l , ji ). (3)

Remark 2.14. From now on, we consider the 2-tensors as κ× κ matrices via the isomorphism

P =
∑

P(j1, j2)ej1 ⊗ ej2 ↔ (P(j1, j2))j1,j2 ,

where rows of the matrix are indexed by the first component, and columns by the second.

3. Theoretical results

3.1 Transforming tensors

In this section we state some technical results related to marginalizations and slices of tensors that arise
from stochastic parameters of the general Markov model on a tree T . For a complete proof of these results
see [10].

Lemma 3.1. Let P be a 3-tensor in the image of parameters for the general Markov model, P =
ϕ(π, {M1, M2, M3}), where T is a trivalent 3-leaf tree. Then, the three possible marginalizations of P
are given by

P..+ = Mt
1diag(π)M2, P.+. = Mt

1diag(π)M3, P+.. = Mt
2diag(π)M3. (4)

And the slices of P are

P..i = MT
1 diag(M3ei)diag(π)M2, P.i . = MT

1 diag(M2ei)diag(π)M3, Pi .. = MT
2 diag(M1ei)diag(π)M3.

(5)

Corollary 3.2. Let P be a tensor arising from parameters of the general Markov model on T with tree
topology T12|34, P = ϕT12|34(π; M1, M2, M3, M4, M5) (see the left hand side of Figure 2). Then the double
marginalizations P+..+, P+.+., P.+.+ and P.++. can be computed in terms of the transition matrices as
follows:

P+..+ = MT
2 diag(π)M5M3, P+.+. = MT

2 diag(π)M5M4,
P.+.+ = MT

1 diag(π)M5M3, P.++. = MT
1 diag(π)M5M4.
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Figure 2: Left: Rooted 4-leaf tree T12|34 with transition matrices {M1, M2, M3, M4, M5}. Right: Rooted
4-leaf tree T12|34 with transition matrices {M1, M1, M4, M4, M5}.

The following lemma describes how, given a tensor in the image of ϕT for a 4-leaf tree T , we can
produce a new tensor still in ImϕT . This is done by multiplying the original tensor with a matrix (in the
sense of (3)), which has the effect of changing the transition matrix of an exterior edge of the tree.

Lemma 3.3. Let P be a 4-tensor for the general Markov model, P = ϕT (π; M1, ... , M5). If Mi is non
singular for some i = 1, 2, 3, 4, then the tensor P̄ = P ∗i (M−1i M) is the image of the same parameters as
P except for Mi which has been replaced by M.

3.2 Stochasticity conditions

In this section we will discuss some theoretical results that will allow us to provide some conditions to
ensure that a tensor of a joint distribution comes from stochastic parameters.

Definition 3.4. A set {π, {Me}e∈E(T )} of stochastic parameters for the general Markov model on a tree
T with root r is called nonsingular if

(i) at every node j of T the distribution of the random variable Xj has no zero entry;

(i) the matrix Me of every edge e is nonsingular.

Remark 3.5. For stochastic parameters and assuming (ii), condition (i) in the previous definition is equiv-
alent to requiring that the root distribution πr has no zero entry.

The following result has been proved in [5]. As we do not use it specifically, we do not include the
proof here.

Theorem 3.6 (Allman–Rhodes–Taylor, [5]). Let P be a (either real or complex) 3-tensor. Then, P arises
from nonsingular parameters for the general Markov model with κ parameters on the 3-leaf tree if and only
if the following conditions hold:

(i) fi (P; x) 6= 0 for an arbitrary vector x and some i = 1, 2, 3, where fi (P; x) = det Hx ((det(P ∗i x)))
and Hx denotes the Hessian operator;

(ii) det(P ∗i 1) 6= 0 for i = 1, 2, 3.

We want to find a similar characterization of P for stochastic parameters. That is, we want to find
some conditions allowing us to distinguish when a tensor P is the image of positive real parameters.
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Theorem 3.7. Let P = ϕT (π, {M1, M2, M3}) be a 3-tensor with π, {Mi}i having real entries. Then,

(1) P is the image of nonsingular stochastic parameters for the general Markov model on the 3-leaf
tree if and only if its components are nonnegative, they sum up to 1, conditions (i) and (ii) from
Theorem 3.6 are satisfied, and

(iii) the matrix

det(P..+)PT
+..adj(P..+)P.+. (6)

is positive definite, and the following matrices are positive semidefinite for i = 1, ... ,κ

det(P..+)PT
i ..adj(P..+)P.+., det(P..+)PT

+..adj(P..+)P.i ., det(P+..)P.+.adj(P+..)PT
..i . (7)

(2) P is the image of nonsingular real positive parameters if and only if its components are positive, they
sum up to one, conditions (i) and (ii) are satisfied, and

(iii’) all matrices in (6) and (7) are positive definite.

In both cases, the nonsingular parameters are unique up to label swapping.

Proof. The proof of this theorem is essentially the same as in [5], but for real parameters. Let P be an
arbitrary nonnegative 3-tensor whose components sum up to 1. Assuming (i) and (ii) and using Theo-
rem 3.6, P is the image of nonsingular parameters. We want to see that condition (iii) is equivalent to these
parameters being nonnegative. To this aim, we are going to analyze what is the meaning of expressions (6)
and (7).

Let P̄ = P+..P
−1
..+P.+., using expressions proved in Lemma 3.1 we compute

P̄ = PT
+..P

−1
..+P.+. = (MT

2 diag(π)M3)T (MT
1 diag(π)M2)−1(MT

1 diag(π)M3)

= MT
3 diag(π)M3.

(8)

This is a well defined symmetric matrix since P..+ is nonsingular. Since M3 is real, P̄ is a positive
definite matrix if and only if

xT P̄x = xTMT
3 diag(π)M3x = (M3x)Tdiag(π)(M3x) > 0, ∀x 6= 0.

Since M3 is nonsingular, it can be understood as a change of basis and hence P̄ is positive semidefinite if
and only if the entries of diag(π) are all positive. We clear denominators and obtain an algebraic expression
multiplying this matrix by the square of the appropriate nonzero determinant. It follows that (6) is positive
definite if and only if π is positive.

Using the expressions in Lemma 3.1, we have

PT
i ..P
−1
..+P.+. = (MT

2 diag(M1ei)M3)T (MT
1 diag(π)M2)−1(M1diag(π)M3) =

= MT
3 diag(π)diag(M1ei)M3.

This matrix is also symmetric, and it is positive semidefinite if and only if the entries of diag(π)diag(M1ei)
are nonnegative. Since π is a positive vector, we need the i-th column of M1 being nonnegative. Using the
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matrices PT
+..P

−1
..+P.i . and PT

..+P−1+..P..i we can also impose the conditions of the i-th column of M2 and M3

being nonnegative. This proves (1).

If the matrices of (6) and (7) are positive definite, we can repeat this proof but requiring positiveness
of the parameters. This proves (2).

In order to clear denominators and obtain an algebraic expression, we multiply all these matrices by the
square of the appropriate nonzero determinant which does not change the sign and gives us expressions (6)
and (7).

Counterexample 3.8. In paper [5], Theorem 3.7 is announced for general tensors P, that is, for P =
ϕT (π, {M1, M2, M3}) where π, M1, M2 and M3 are complex. But we provide here a counterexample to
show that if M3 is not real, diag(π) being positive does not imply P̄ = MTdiag(π)M being positive
definite; see (8). For κ = 2 let us consider the matrices

D =
1

2

(
1 0
0 1

)
and M =

1

4

(
2 + i 2− i
2− i 2 + i

)
.

However, the matrix MTDM =
1

16

(
3 5
5 3

)
is not positive definite.

Moreover, the reverse implication is not true either. For instance, for the positive definite matrix

P̄ = MTDM =

(
8 0
0 8

)
,

we have the following decomposition, where D is not positive: D =

(
−1 0
0 4

)
, M =

(
2i −2i
1 1

)
.

Due to this counterexample we are forced to restrict the statement of the above theorem to the case
of real matrices.

Assuming now that an n-tensor P arises from nonsingular parameters on a tree, we would like to give
some semialgebraic conditions that are satisfied if and only if P comes from stochastic parameters. If we
consider marginalizations of P to three variables and using Theorem 3.7, we can derive conditions that
hold when the root distribution and the product of matrices associated to any path from an interior node
to a leaf are stochastic. Nevertheless, we need some extra conditions to guarantee matrices of the interior
edges being stochastic.

The following result gives us a condition for all parameters of the 12|34 tree being stochastic.

Theorem 3.9 (Allman–Rhodes–Taylor, [5]). Let P be a 4-tensor. Suppose P arises from nonsingular real
parameters for the general Markov model on T12|34. If the marginalizations P+... and P...+ arise from
stochastic parameters and, moreover, the κ2 × κ2 matrix

det(P+..+)det(P.+.+)Flatt13|24

(
P ∗2

(
adj(PT

+..+)PT
.+.+

)
∗3
(
adj(P.+.+)P.++.

))
(9)

is positive semidefinite, then P arises from stochastic parameters.

Proof. The root r is placed at the interior node near leaves 1 and 2, as we can see in the tree presented
on the left of Figure 2. Let Mi , i = 1, 2, 3, 4, be the complex matrix associated to the edges leading to
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leaves, M5 the matrix on the internal edge, and π the root distribution. The rows of these matrices sum
up to 1. We define the four matrices

N32 = PT
+..+ = MT

3 MT
5 diag(π)M2, N31 = PT

.+.+ = MT
3 MT

5 diag(π)M1,
N14 = P.++. = MT

1 diag(π)M5M2, N13 = P.+.+ = MT
1 diag(π)M5M3.

(10)

We define now a tensor P̄ arising from the same parameters as P except that M2 has been replaced by M1

(see Lemma 3.3) and, similarly, a tensor P̃ arising from the same parameters as P̄ but with M4 instead of
M3:

P̄ = P ∗2 N−132 N31 = P ∗2 M−12 M1, P̃ = P̄ ∗3 N−113 N14 = P̄ ∗3 M−13 M4. (11)

We can express

Flat13|24(P) = (M1 ⊗M3)TD(M2 ⊗M4), (12)

where D is the diagonal matrix containing the κ2 entries of diag(π)M5; see [10] for further details. Since
P̃ arises from the same parameters that P except that M2 has been replaced by M1 and M3 by M4, we
can write Flat13|24(P̃) = (M1 ⊗M4)TD(M1 ⊗M4).

Since the 3-marginalization arises from stochastic parameters, M1 and M4 are nonsingular and the
components of π are positive. Thus, M1 ⊗M4 is also nonsingular. All principal minors of Flat13|24(P̃) are

nonnegative if and only if Flat13|24(P̃) is positive semidefinite. Then we have to require the entries of D to
be nonnegative and so, since π has positive components, we can ensure that M5 has nonnegative entries.
By multiplying Flat13|24(P̃) by the square of the appropriate nonzero determinant, we clear denominators
and obtain the algebraic expressions stated in the theorem.

Remark 3.10. The theoretical results proved in this section complement the algebraic description of the
model (given by topology invariants) with a semialgebraic description of the points with stochastic sense.
In other words, as well as finding polynomials vanishing on the image of the parametrization map, we have
found polynomial inequalities sufficing to characterize the stochastic image.

The conditions of matrices being positive definite/semidefinite can be expressed as semialgebraic con-
ditions using Sylvester’s criterion, which claims that a real symmetric matrix is positive definite (resp.,
positive semidefinite) if and only its leading principal minors are positive (resp., nonnegative).

On the other hand, the replacements of inverses in (11) by adjoint matrices in (9) is not only done in
order to have semialgebraic conditions, but also to avoid dealing with the inverse of ill conditioned matrices.

Let P be the tensor used in Theorem 3.9 and P̃ the one constructed in (11). Since P̃ arises from the
same parameters that P except that M2 has been replaced by M1 and M3 by M4, it is the joint distribution
of the tree presented on the right hand side of Figure 2. Observing the symmetry of the exterior transition
matrices we can state the following result.

Theorem 3.11. Let P be a 4-tensor whose components sum up to 1. Suppose that

P = ϕT (π, M1, M2, M3, M4, M5),

with T = T12|34, and let P̃ be constructed as in (11). Then,

Flat13|24(P̃) = Flat14|23(P̃) and Flatt12|34(P̃) 6= Flatt13|24(P̃). (13)
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In particular, the equality of matrices

det(P+..+)det(P.+.+)Flatt13|24

(
P ∗2

(
adj(PT

+..+)PT
.+.+

)
∗3
(
adj(P.+.+)P.++.

))
=

= det(P+..+)det(P.+.+)Flatt14|23

(
P ∗2

(
adj(PT

+..+)PT
.+.+

)
∗3
(
adj(P.+.+)P.++.

))
gives rise to 256 topology invariants of degree 17.

Proof. Using (12), and the fact that, in P̃, M2 has been replaced by M1, and M3 by M4, we have

Flat13|24(P̃) = (M1 ⊗M4)TD(M1 ⊗M4) = Flat14|23(P̃). (14)

In contrast, Flatt12|34(P̃) = M̄T
1 diag(π)M̄4, where M̄1(xi , (xj , xk)) = M1(xi , xj)M1(xi , xk), M̃4(xi , (xj , xk)) =∑κ

l=1 M5(xi , xl)M4(xl , xj)M4(xl , xk), is, in general, not equal to (14).

The expression Flat13|24(P̃) = Flat14|23(P̃) provides 16 × 16 equalities between entries. By (9), these
entries are algebraic expressions in terms of components of P. Moreover, because of (13), these equalities
are not satisfied by any distribution arising from a tree and then they are topology invariants.

Finally, regarding (9), we infer the degree of these expressions in the components of P:

(i) the two determinants have degree 4 each, which makes degree 8;

(ii) the components of the tensors adj(PT
+..+)PT

.+.+ and adj(P.+.+)P.++. have degree 4.

The ∗ operation adds degrees, so we obtain a tensor of degree 1 + 4 + 4 = 9 before applying Flat13|24(·).
Altogether gives a tensor with components of degree 8 + 9 = 17.

4. Conclusions

In this paper, we have seen that the conditions of stochasticity on the parameters from Theorem 3.9 are
enough to ensure that the 4-tensor arising from real nonsingular parameters under the general Markov
model comes from stochastic parameters. From these conditions we have been able to find new topology
invariants. So, we can extract the following conclusions:

(i) we have disentangled the theoretical results of stochastic conditions of the parameters and we have
provided a counterexample to an error in a proof of [5] as well;

(ii) using the ideas from the proof of Theorem 3.9 we have provided 256 topology invariants of degree
17.

However, there is still further research to do:

(i) check whether the new topology invariants we found are sufficient to describe the phylogenetic
algebraic variety;

(ii) check if these conditions can be used with real data, in order to give new information that can be
used in some phylogenetic reconstruction method.
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