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A Geometric Application of Runge’s Theorem

1. Introduction

The Runge and Mergelyan Theorems are the main results of Approximation Theory in one complex variable.
The former, proved in 1885, asserts that every holomorphic function defined on an open neighbourhood
of a compact set K of C can be uniformly approximated on K by entire functions, provided that the
complement of K in C has no relatively compact connected components, see [11]. In the same line,
Mergelyan [10] proved in 1951 that a continuous function K → C, which is holomorphic on K ◦, can be
uniformly approximated on K by holomorphic functions on an open neighbourhood of K . Later, Bishop [5]
extended these results to the context of open Riemann surfaces.

Theorem 1.1 (Runge–Mergelyan Theorem). Let R be an open Riemann surface and let K ⊂ R be
a compact subset such that R \ K has no relatively compact connected components in R. For any
continuous function f : K → C which is holomorphic on K ◦ and any ε > 0, there exists a holomorphic
function F : R → C such that ‖F (p)− f (p)‖ < ε for all p ∈ K .

The Runge and Mergelyan Theorems are useful in many different areas, e.g., complex analysis or surface
theory. In particular, these tools have been exploited in the construction of minimal surfaces in the three-
dimensional euclidean space R3. Recall that this class of surfaces is closely related to complex analysis
through the Enneper–Weierstrass representation.

A fundamental problem in minimal surface theory is to understand how the conformal type (i.e., the
type of the underlying Riemann surface) influences the global geometry of minimal surfaces. From an
analytical point of view, an open Riemann surface is hyperbolic if and only if it admits negative non-
constant subharmonic functions, and it is parabolic otherwise. This classification can also be explained in
terms of Brownian motion of a particle over the surface; parabolicity is equivalent to the property that the
Brownian motion visits any open set at arbitrarily large moments of time with probability 1. See the book
of Grigor’yan [8] for more details.

Up to biholomorphisms, the only simply connected open Riemann surfaces are the unit disk D (of
hyperbolic type) and the complex plane C (of parabolic type). Heinz [9] proved in 1952 that there do
not exist harmonic diffeomorphisms between D and C with the euclidean metrics, extending the classical
theorems by Riemann and Liouville. As a generalization of this result, Schoen–Yau [12, p. 18] conjectured
in 1985 the nonexistence of proper harmonic maps D→ R2. Schoen and Yau related this conjecture with
the problem of existence of minimal surfaces in R3 having hyperbolic conformal type and proper projection
into R2; recall that the coordinate functions of a conformal minimal immersion from a Riemann surface
into R3 are harmonic. In 2001, Forstnerič–Globevnik [7, Theorem 1.4] disproved Schoen–Yau’s conjecture.
In 2011, Alarcón–Gálvez [1] extended this result to surfaces with finite topology. Although the Schoen–Yau
conjecture was solved, its version for minimal surfaces was still open. This problem was settled in the most
general and optimum form by Alarcón–López [2, 3], who proved the following result.

Theorem 1.2 (Alarcón–López [2, 3]). Every open Riemann surface R admits a conformal minimal immer-
sion X = (X1, X2, X3) : R → R3, such that (X1, X2) : R → R2 is a proper map.

The proof of Alarcón–López is based on a Runge–Mergelyan type theorem for minimal surfaces [2],
a powerful tool in the construction of minimal surfaces which has found many applications. Since the
coordinate functions of a conformal minimal immersion are harmonic, the full answer to the Schoen–Yau
conjecture is immediately derived from Theorem 1.2:
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Theorem 1.3. Every open Riemann surface R admits a proper harmonic map R → R2.

An alternative proof of this result was given later by Andrist–Wold [4].

The goal of this article is to give a simple proof of Theorem 1.3. Our proof combines the ideas
of Alarcón–López with the classical Runge–Mergleyan Theorem 1.1. Roughly speaking, given an open
Riemann surface R, we will construct an expansive sequence of compact sets {Mn}n∈N on R and harmonic
maps {hn : Mn → R2}n∈N satisfying hn+1 ≈ hn on Mn, n ≥ 1, and {hn(∂Mn)}n∈N → ∞. We will ensure
that the limit map h := limn→∞ hn exists and is proper and harmonic.

2. Background

We denote by ‖ · ‖ the euclidean norm in Rn. Given a compact topological space K and a continuous
function f : K → Rn, we denote by ‖f ‖K = maxa∈K ‖f (a)‖ the maximum norm of f on K . Given ζ ∈ C
we denote by <(ζ) and =(ζ) its real and imaginary parts, respectively.

Let S be a topological surface. We denote by ∂S the topological boundary of S ; recall that ∂S is a
1-dimensional topological manifold. Hence, we say that the surface S is open if it is not compact and
∂S = ∅. Given a subset A ⊂ S , we denote by A and A◦ the closure and the interior of A in S , respectively.
Given subsets A, B ⊂ S , we write A b B when A ⊂ B◦. A subset A ⊂ S \ ∂S is called a bordered region
in S if A is a compact topological surface with the topology induced by S and ∂A 6= ∅; in particular, ∂A
consists of a finite family of pairwise disjoint Jordan curves. If S is a differentiable surface, a bordered
region A on S is called differentiable if ∂A is differentiable.

Let X and Y be two topological spaces. A map f : X → Y is called proper if f −1(C ) is a compact
subset of X for any compact subset C ⊂ Y . If f is continuous and Y is Hausdorff, then f is proper if and
only if for any divergent sequence {xn}n∈N in X (i.e., leaving any compact set), the sequence {f (xn)}n∈N
is divergent in Y .

Recall that a Riemann surface (without boundary) R is a 1-dimensional complex manifold and every
open set of a Riemann surface is canonically a Riemann surface by restriction of charts.

From now on, R will denote an open Riemann surface.

A function φ : R → C is called holomorphic if the composition with any chart of R is a holomorphic
function; equivalently, if for any point p ∈ R there exists a chart around p ∈ R such that the composition
with φ is again a holomorphic function.

Definition 2.1. Let R be an open Riemann surface. A function h : R → R is called harmonic if its
composition with any chart is harmonic; equivalently, if for any point p ∈ R there exists a chart around
p ∈ R such that the composition is harmonic. A map (h1, ... , hn) : R → Rn, n ∈ N, is called harmonic if
hj : R → R is harmonic for all j = 1, ... , n.

Recall that, since the changes of charts in a Riemann surface are biholomorphisms and the composition
of a harmonic function with a biholomorphism is again harmonic, the notion of harmonicity is well-defined
on a Riemann surface. Furthermore, a function h : R → R is harmonic if and only if for any simply
connected open set D ⊂ R there exists a holomorphic function φ : D → C such that h|D = <(φ).

A compact subset K ⊂ R is called Runge if R \ K has no relatively compact connected components
in R.
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Theorem 2.2 (Runge–Mergelyan). Let R be an open Riemann surface and let K ⊂ R be a compact
Runge subset. Given a continuous function f : K → C which is holomorphic on K ◦ and given ε > 0, there
exists a holomorphic function F : R → C such that ‖F − f ‖K < ε.

3. Proof of Theorem 1.3

Theorem 1.3 is a consequence of the following more general result, concerning the existence of holomorphic
functions into C2.

Theorem 3.1. Let R be an open Riemann surface. Then there exists a holomorphic function H =
(H1, H2) : R → C2 such that <(H) = (<(H1),<(H2)) : R → R2 is proper.

This is the main result of the paper; since <(H) is harmonic, Theorem 1.3 follows directly. Before
going into the proof of Theorem 3.1 we need some preparations.

Lemma 3.2. For any open Riemann surface R there exists a sequence of bordered regions {Mn}n∈N in R
such that

(i) Mn is a differentiable bordered region and it is Runge and connected for all n ∈ N;

(ii) {Mn}n∈N is an exhaustive sequence, that is, Mn b Mn+1 ∀n ∈ N and
⋃

n∈N Mn = R;

(iii) χ(Mn+1 \M◦n) ∈ {−1, 0} ∀n ∈ N, where χ(M) denotes the Euler characteristic of the region M.

Proof. Let {Un}n∈N be a exhaustive sequence of R by connected (differentiable) bordered regions; such
sequences trivially exists. Let us first show that we can find a new exhaustion {Vn}n∈N of R by connected
Runge regions. Indeed, if U1 is Runge we define V1 = U1; otherwise, we define V1 as the union of U1 with
all the bounded connected components of R \ U1. Therefore V1 is Runge and connected. Inductively, for
any n ≥ 2 let Vn be the union of Vn−1, Un and all the bounded connected components of R \ Un. This
implies that Vn is Runge and connected. As Un ⊂ Vn and Vn b Vn+1 ∀n ∈ N, the sequence {Vn}n∈N is
an exhaustion of R by Runge connected bordered regions.

The properties (i) and (ii) of the lemma are formally satisfied by {Vn}n∈N. The second step of the
proof consists of adding convenient terms to the exhaustion {Vn}n∈N in order to guarantee property (iii).

We consider now two consecutive regions Vm and Vm+1, m ∈ N. Set A := Vm, B := Vm+1 and recall
that A b B. Let n := −χ(B \ A◦).

Claim 3.3. There exist compact sets N1, ... , Nn−1 in R such that

• A b N1 b N2 b · · · b Nn−1 b B;

• χ(N1 \ A◦), χ(Ni \ N◦i−1) and χ(B \ N◦n−1) take values in {−1, 0}, for i = 2, ... , n − 1.

Proof. We proceed by induction on n. If n ∈ {−1, 0} there is nothing to prove. Suppose the claim is true
when −χ(B \ A◦) ≤ n, n ∈ N, and let us prove it in the case −χ(B \ A◦) = n + 1. Recall that A and B
are connected Runge regions and A b B. Hence, (I) A and B \ A◦ have at least one common boundary
component γ1, thus satisfying γ1 ⊆ ∂A∩ ∂(B \A◦); and (II) B \A◦ has at least one boundary component
γ2 which does not intersect A (in particular, γ1 6= γ2 and so, ∂(B \ A◦) is not connected).
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Figure 1: Possibility 1: adding a boundary component.

Let us call g the genus of B \ A◦, and k ≥ 2 the number of connected components of ∂(B \ A◦). It
follows that χ(B \ A◦) = 2− 2g − k . Since −χ(B \ A◦) = n + 1 > 1 (that is, 2g + k ≥ 4), properties (I)
and (II) ensure the existence of a compact region W in R such that:

(i) W has genus 0 and three boundary components;

(ii) W ⊂ B, γ2 ⊆ ∂W and W ∩ A = ∅;

(iii) if γ ⊂ ∂W is a boundary component of W , then either γ ⊂ ∂B or γ ⊂ B◦.

Property (iii) is equivalent to the fact that ∂W ∩ ∂B has either one or two connected components.

Finally, we define B∗ := B \W . Now we observe that B∗ is Runge and connected and also, A b B∗ b B,
χ(B∗ \ A◦) = −n and χ(B \ B◦∗ ) = −1. By the induction hypothesis applied to the pair A b B∗,
there exist connected Runge compact sets N1, ... , Nn−2 in R such that A b N1 b · · · b Nn−2 b B∗,
χ(N◦1 \ A) ∈ {−1, 0}, χ(B◦∗ \ Nn−2) ∈ {−1, 0}, and χ(N◦i \ Ni−1) ∈ {−1, 0} for i = 2, ... , n − 2. Setting
Nn−1 := B∗, the sequence of connected Runge compact sets N1, ... , Nn−1 proves the inductive step and
concludes the proof of the claim.

The sequence {Mn}n∈N that satisfies the statement of the lemma is generated by the process described
in the Claim 3.3 applied to each pair Vm b Vm+1 with −χ(Vm+1 \V ◦m) > 1. We only have to add the new
necessary terms and re-enumerate the arising sequence accordingly.

Remark 3.4. It is interesting to think on the topological operations used in Lemma 3.2. The way we change
to the next term is with an Euler characteristic change of value −1 or 0. We can study both in detail:

• Case χ(B \ A◦) = 0. The compact set B has the same genus and the same number of boundary
components than A, hence B◦ \ A is a finite union of pairwise disjoint annuli.

• Case χ(B \ A◦) = −1. We put W := B \ A◦ and recall that W must have at least two boundary
components (k ≥ 2), one of them contained in ∂A and the other ones disjoint to A and contained
in ∂B. Since χ(W ) = 2− 2g − k = −1, where g is the genus of W , we have that g = 0 and k = 3.
This case is possible only in two different topological situations, illustrated in Figures 1 and 2.

We continue with the following lemma whose proof is based on the Runge–Mergelyan Theorem.
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Figure 2: Possibility 2: adding a handle and removing a boundary component.

Lemma 3.5. Let R be an open Riemann surface. Let A and B be bordered regions of R such that A b B
and χ(B \ A◦) ∈ {−1, 0}. Let τ > 0 be a positive number and let f = (f 1, f 2) : A→ C2 be a continuous
function, which is holomorphic on A◦, and such that max{<(f 1),<(f 2)} > τ on ∂A. Then, for any δ > 0,
there exists a continuous function F : B → C2, which is holomorphic on B◦, and satisfying the following
properties:

(a) ‖F − f ‖A < δ;

(b) max{<(F 1),<(F 2)} > τ on B \ A;

(c) max{<(F 1),<(F 2)} > τ + 1 on ∂B.

Proof. We distinguish cases depending on the value of the Euler characteristic of B \ A◦.

Case 1: χ(B \ A◦) = 0.

In this case B \ A◦ = A1 ∪ · · · ∪ Am, where each Ai is an annulus for all i ∈ {1, ... , m}. In order to
simplify notation we will suppose that m = 1. The general case is almost identical and consists of applying
the same argument to each annulus Ai . Therefore, B \ A◦ is an annulus.

So, ∂(B \A◦) consists of two disjoint connected components, that is, ∂(B \A◦) = c ∪ d where c = ∂A
and d = ∂B. Since max{<(f 1),<(f 2)} > τ on ∂A, we can find an open cover Σ̃ = {Oλ : λ ∈ Λ} of c
such that

<(f 1) > τ or <(f 2) > τ , on each Oλ, λ ∈ Λ. (1)

Since ∂A is compact, there exists a finite subcover Σ = {O1, ... , Ok} of ∂A contained in Σ̃. Take arcs
α1, ... ,αn in c such that the following properties are satisfied:

• αj ⊂ Oh(j) for some h(j) ∈ {1, ... , k}, ∀j = 1 ... , n;

• ∪nj=1αj = c ;

• α◦j1 ∩ α
◦
j2

= ∅, ∀j1, j2 ∈ {1, ... , n}, j1 6= j2.

We denote by pj ∈ c the initial point of the curve αj , ∀j = 1, ... , n. We relabel the arcs αj , j = 1, ... , n, in
order to ensure that the final point of αj−1 is the initial point pj of αj , for any j > 1. We adopt the cyclic
notation, p1 = pn+1, to identify the initial point of α1 and the final point of αn.
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Figure 3: B \ A◦.

Let (I1, I2) be subsets of {1, ... , n} satisfying: (1) I1 ∪ I2 = {1, ... , n} and I1 ∩ I2 = ∅; and (2) if j ∈ Iµ
then <(f µ) > τ on αj , µ ∈ {1, 2}. We consider now a family of non-intersecting simple curves from c to
d that we denote {γj}j=1,...,n. We suppose that the initial point of γj is pj ∈ c and we call its final point
qj ∈ d . It follows that γj ∩ (c ∪ d) = {pj , qj} for any j = 1, ... , n; see Figure 3.

We define now an auxiliary continuous function g = (g1, g2) : A ∪ γ1 ∪ · · · ∪ γn → C2, which is
holomorphic on A and satisfies the following properties:

(i) g |A = f ;

(ii) if j − 1 ∈ Iµ then <(gµ) > τ on γj and <(gµ(qj)) > τ + 1 ∀j = 1, ... , n (here, we call α0 = αn and
q0 = qn);

(iii) if j ∈ Iµ then <(gµ) > τ on γj and <(gµ(qj)) > τ + 1 ∀j = 1, ... , n;

where µ ∈ {1, 2}. Such a function g exists due to properties (1) and (2) above.

Since A is Runge, the set M = A ∪ γ1 ∪ · · · ∪ γn is also Runge and the Runge–Melgerlyan Theorem
gives a continuous function G : B → C2, which is holomorphic on B◦ and satisfies the following properties:

(iv) ‖G − g‖A < δ/2 on A; here, δ is the positive number given in the statement of the lemma;

(v) max{<(G 1),<(G 2)} > τ on ∂A = c ;

(vi) if j − 1 ∈ Iµ for µ ∈ {1, 2}, then <(Gµ) > τ on γj and <(Gµ(qj)) > τ + 1, ∀j = 1, ... , n;

(vii) if j ∈ Iµ for µ ∈ {1, 2}, then <(Gµ) > τ on γj and <(Gµ(qj)) > τ + 1, ∀j = 1, ... , n.

Summarizing, the function G formally satisfies properties (a), (b), and (c) on the set M and, by
continuity, in a neighbourhood of M, but not necessary in the whole B.

Given j ∈ {1, ... , n}, there is an open neighbourhood Γj on B of γj ∪αj ∪γj+1 such that G still satisfies
(a), (b), and (c) in any set Γj , j ∈ {1, ... , n}. More concretely, if j ∈ Iµ for µ ∈ {1, 2} then

<(Gµ) > τ on Γj and <(Gµ) > τ + 1 on Γj ∩ ∂B, (2)
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Figure 4: B \ A◦.

∀j = 1, ... , n. We introduce some more notation. For any fixed j ∈ {1, ... , n}, we consider the topological
closed disk in B \ A◦ whose boundary contains the set γj ∪ αj ∪ γj+1 and is disjoint from αl , l 6= j . We
call Ωj the complement of Γj in this disk; see Figure 4.

Set:

(viii) Ω1 =
⋃

j∈I1 Ωj ;

(ix) Ω2 =
⋃

j∈I2 Ωj ;

(x) Γ1 =
⋃

j∈I1 Γj ;

(xi) Γ2 =
⋃

j∈I2 Γj .

It follows that
B = A ∪ Γ1 ∪ Γ2 ∪ Ω1 ∪ Ω2. (3)

Consider the functions

G̃ 1 : A ∪ Γ1 ∪ Ω2 → C, G̃ 1 =

{
G 1 in A ∪ Γ1,
τ + 2 in Ω2,

(4)

G̃ 2 : A ∪ Γ2 ∪ Ω1 → C, G̃ 2 =

{
G 2 in A ∪ Γ2,
τ + 2 in Ω1,

(5)

and recall that (A ∪ Γ1) ∩ Ω2 = ∅ and (A ∪ Γ2) ∩ Ω1 = ∅.
The sets A∪Γ1∪Ω2 and A∪Γ2∪Ω1 are Runge in B, whereas the functions G̃ 1 and G̃ 2 are continuous,

and holomorphic on the interior. Hence, by the Runge Theorem, there exist two holomorphic functions on
B, which we call F 1 and F 2, that approach G̃ 1 and G̃ 2, respectively. Then, if the approximation is close
enough, F = (F 1, F 2) : B → C2 is holomorphic and satisfies:

(xii) ‖F − G̃‖A < δ/2;

(xiii) F 1 approaches G̃ 1 in A ∪ Γ1 ∪ Ω2;
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Figure 5: The arc β.

(xiv) F 2 approaches G̃ 2 in A ∪ Γ2 ∪ Ω1.

Let us check that F solves the Lemma. Indeed:

• By properties (iv) and (v), G̃ = G on A, and so (xii) gives ‖F − G‖A < δ/2. Thus, taking into
account (i) and (iv), we get ‖F − f ‖A < ‖F − G‖A + ‖G − f ‖A < δ.

• In Γ1, we have <(G 1) > τ (by equation (2) and property (x)) and so, <(F 1) > τ on Γ1 provided the
approximation in (xiii) is close enough; take into account equation (4). Hence, max{<(F 1),<(F 2)} >
τ on Γ1.

• In Γ2, we have <(G 2) > τ (by equation (2) and property (xi)) and so, <(F 2) > τ on Γ2 provided the
approximation in (xiv) is close enough; use equation (5). Therefore, max{<(F 1),<(F 2)} > τ on Γ2.

• In Ω1, we have <(G̃ 2) > τ (by equation (2) and property (viii)) and so, <(F 2) > τ on Ω1 provided
the approximation in (xiv) is close enough. Thus max{<(F 1),<(F 2)} > τ on Ω1.

• In Ω2, we have <(G̃ 1) > τ (by equation (2) and property (ix)) and so, <(F 1) > τ on Ω2 provided
the approximation in (xiii) is close enough. Hence max{<(F 1),<(F 2)} > τ on Ω2.

We finish the discussion with the set ∂B. On the one hand, we have <(G̃ 2) > τ + 1 on Ω1 (by

equations (2) and (5)). On the other hand, <(G̃ 1) > τ + 1 on Ω2 (by equations (2) and (4)). Finally,
max{<(G 1),<(G 2)} > τ + 1 on ∂B \ (Ω1 ∪ Ω2) = (Γ1 ∪ Γ2) ∩ ∂B. Indeed, G 1 > τ + 1 on ∂B ∩ Γ1 and
G 2 > τ + 1 on ∂B ∩ Γ2; see equation (2). Thus, max{<(F 1),<(F 2)} > τ + 1 in ∂B.

This concludes the proof in case 1.

Case 2: χ(B \ A◦) = −1.

By Remark 3.4, B can be described as a neighbourhood of the set that we obtain when we add an arc
in B \ A to A with initial point and final point in ∂A. We call this arc β and we observe that A ∪ β is a
deformation retract of B; see Figures 5 and 6.

Consider a continuous function g : A ∪ β → C2, which is holomorphic on A◦ and satisfies g = f on A
and max{<(g1),<(g2)} > τ on β. By Runge’s Theorem we may approximate g on A∪ β by holomorphic
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Figure 6: The arc β.

functions f̂ on B. If we take a closed neighbourhood Â of A ∪ β on B◦ with χ(B \ Â◦) = 0 (recall that
A ∪ β is a deformation retract of B), and the approximation is close enough, the function f̂ |Â formally
satisfies the hypothesis (a), (b), and (c) of the lemma. This reduces the proof to Case 1.

Proof of Theorem 3.1. Let {Mn}n∈N be an exhaustive sequence of Runge and connected bordered regions
in R such that χ(Mn+1 \ Mn) ∈ {−1, 0} for all n ∈ N. Such sequences exists by Lemma 3.2. Given a
sequence of real numbers {εn}n∈N, εn > 0, a recursive use of Lemma 3.5 supplies a sequence of continuous
functions fn = (f 1

n , f 2
n ) : Mn → C2, n ∈ N, satisfying:

(a) fn is holomorphic on M◦n , ∀n ∈ N;

(b) ‖fn+1 − fn‖Mn < εn, ∀n ∈ N;

(c) max{<(f 1
n ),<(f 2

n )} > n on ∂Mn, ∀n ∈ N;

(d) max{<(f 1
n+1),<(f 2

n+1)} > n on Mn+1 \M◦n , ∀n ∈ N.

Indeed, for the basis of the induction, choose any continuous function f1 : M1 → C2, which is
holomorphic on M◦1 , and satisfies max{<(f 1

1 ),<(f 2
1 )} > 1 on ∂M1. For instance, we may take f1 to

be a suitable constant in C2. For the inductive step, let n ∈ N and suppose that we have func-
tions f1 : M1 → C2, ... , fn : Mn → C2 satisfying formally the above properties. Since Mn b Mn+1

and χ(M◦n+1 \ Mn) ∈ {−1, 0}, Lemma 3.5 applied to τ = n and δ = εn gives a continuous function
F = (F 1, F 2) : Mn+1 → C2, which is holomorphic in M◦n+1, and satisfies ‖F − fn‖ < εn. In addition,
max{<(F 1),<(F 2)} > n on Mn+1 \Mn and max{<(F 1),<(F 2)} > n + 1 on ∂Mn+1. Obviously, we finish
the induction setting fn+1 = F .

Let {fn : Mn → C2}n∈N be the sequence we have already found satisfying (a)–(d). Let us see first that,
up to a suitable choice of the numbers εn, the sequence fn converges uniformly on compact sets of R. It
is enough to prove that (for a good choice of the εn) given ε > 0 and a compact set K ⊂ R, there exists
n0 ∈ N such that if p, q ≥ n0 then ‖fp − fq‖K ≤ ε. It is required that n0 is large enough to satisfy that
K ⊂ Mn0 , so that fp and fq are well defined on K . Indeed, if we take the sequence {εn}n∈N such that
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∞∑
n=1

εn < +∞ , we can consider n0 such that
∞∑

n=n0+1
εn < ε and K ⊂ Mn0 . Then, given p, q ≥ n0, p > q,

‖fp − fq‖K = ‖
p−q∑
k=1

(fq+k − fq+k−1) ‖K ≤
p−q∑
k=1

‖fq+k − fq+k−1‖Mq+k−1
<

p−q∑
k=1

εq+k−1 =

p∑
n=q

εn < ε.

Therefore, {fn}n∈N is a Cauchy sequence with the maximum norm and, consequently, it converges uniformly
on compact sets to a function f : R → C2. Furthermore, the convergence Harnack theorem asserts that f
is holomorphic and so, <(f ) : R → R2 is harmonic. On the other hand, if we fix ε and n0 as above and we
take limits in the previous estimation, we obtain that

‖f − fn‖Mn ≤ ε, ∀n ≥ n0. (6)

To finish the proof, let us check that <(f ) : R → R2 is proper. Let {xn}n∈N ⊂ R be a divergent
sequence. Then for each n ∈ N there exists mn ∈ N such that xn ∈ Mmn\Mmn−1 and, by (d), ‖<(fn(xn))‖ >
mn. Hence, using (6), we deduce that ‖<(f (xn))‖ > mn − ε. But now, as {xn}n∈N is divergent on R and
{Mn}n∈N is increasing, we have that mn depends on n in such a way that if n → +∞, then mn → +∞.
Therefore, it is clear that ‖<(f (xn))‖Mn → +∞ as n → +∞, and {<(f (xn))} is a divergent sequence.
Thus, ϕ = <(f ) : R → R2 is proper, which concludes the proof.
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