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Enric Ventura, Universitat Politècnica de Catalunya
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Resum (CAT)
L’objectiu d’aquest treball és presentar una introducció al càlcul estocàstic. En la
primera part parlem del moviment brownià, el qual veurem que es pot pensar com
a ĺımit de passeigs aleatoris amb l’ajut del principi d’invariància de Donsker.

A continuació, presentem de manera heuŕıstica les equacions diferencials estocàs-

tiques i veiem com es poden definir de manera rigorosa amb l’ajut de la integral

estocàstica. Finalment, parlem d’existència i unicitat de solucions d’aquestes

equacions i tractem un cas senzill com és el de l’equació de Langevin.

Abstract (ENG)
The aim of this work is to provide an introduction to the subject of Stochastic
Calculus. In the first part we talk about the Brownian motion, which we will see
that it can be thought as a limit of random walks via Donsker’s Invariance Principle.

Next, we heuristically present the stochastic differential equations and see how they

can be rigorously defined with the help of the stochastic integral. Finally, we discuss

the matter of existence and uniqueness of solutions to such equations and solve a

rather simple case like the Langevin equation.
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A random walk approach to Stochastic Calculus

1. Introduction

In subjects like Thermodynamics and Statistical Mechanics, in several occasions one gives a stochastic
approach of a problem even though it can be treated in a deterministic way because it usually leads to
simple and less tedious formulations and computations. For instance, if we want to study the motion of
a particle in a fluid, it is much more simpler to think that the object moves randomly due to the several
collisions that are happening in the system, rather than considering each interaction individually and try to
force brute Newton’s equations into the system.

This approach, which seems promising, comes with a couple of drawbacks. The first one is that we have
to give up on trying to determine the exact trajectory of the particle, since, even if the initial conditions
are the same, different identical particles might describe different sample paths.

The other drawback, which we shall focus our attention on, is that these kind of formulations usually
lead to equations like the Langevin equation:

dẊt

dt
= −µẊt + Ḟt , Ẋt =

dXt

dt
, (1)

where µ is some positive real constant, Xt is the position of the particle at time t ≥ 0 and Ḟt is a random
perturbation that evolves with time and satisfies some conditions like E[Ḟt ] = 0 and E[Ḟt Ḟs ] = Γδ(t − s)
(being E the expectation operator, Γ some positive real constant and δ the Dirac delta). Many physicists say
that the process X = {Xt : t ≥ 0}, where Xt is the position described by the latter equation, is a Brownian
motion. However, it is very well-known that the sample paths of such process are nowhere differentiable in
closed intervals with probability one, meaning that expressions like Ẋt (and higher order derivatives) make
no sense when they are considered pathwise, so we must find a way to define such objects (derivatives of
functions which are not differentiable in the usual sense) in order to be able to give a rigorous definition of
equations like (1). Before doing so, we first need to define what is a Brownian motion. More particularly,
we must check that we can define a mathematical object satisfying the properties that a process like the
one described by (1) should satisfy.

2. Construction of the Brownian motion

When one asks what is a Brownian motion to someone who is not familiar with the subject of stochastic
processes, the usual answer is that it is the random movement of a particle suspended in some medium
(a liquid or the air, for instance). In some other cases, the answer is that it is the movement described
by a particle that makes small, random displacements which behave similarly, even though they seem
uncorrelated no matter what the position of the object is.

But all these features are already satisfied by a random walk whose jumps are “small” (for instance, of
finite variance). Indeed, recall that a random walk is a process S = {St : t ∈ N ∪ {0}} such that S0 = 0
(this is taken arbitrarily) and

St =
t∑

j=1

Xj , t ≥ 1,

where {Xj : j ∈ N} is a sequence of i.i.d. random variables, which we shall assume, without any loss of
generality, that they are centered and with variance 0 < σ2 < ∞. So why would we need to give it another
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name? What is the difference between this processes and the so-called Brownian motion? To see this, we
first see some of the common properties that share the class of random walks with finite variance jumps:

1. The first one, which is a choice rather than some intrinsic property of the process S , is that it starts
from the origin.

2. The second one, which is a bit more interesting, is that the displacements of the process are indepen-
dent and stationary; that is, if 0 ≤ s < t ≤ s ′ < t ′, then the random variables St − Ss and St′ − Ss′

are independent and the law of St − Ss depends only on t − s. Indeed, for the independence of the
increments, one has that

St − Ss =
t∑

j=s+1

Xj , St′ − Ss′ =
t′∑

j=s′+1

Xj .

Since the random variables Xj are mutually independent, we conclude that the increments are inde-
pendent. As for the second part, the fact that the law of the increment St −Ss depends only on t− s
means, in our setting, that the law depends only on the number of variables Xj involved. Since they
are independent and identically distributed, the claim follows.

3. The last property, but not less important, is that, due to the Central Limit Theorem, for t ≥ 0 large
enough, and roughly speaking,

St ∼ N (0,σ2t).

In other words, the long term behaviour of the random variable St is described by a centered Gaussian
random variable with variance σ2t. Since it depends linearly with time, one can say that the process
is diffusive in the long term.

Therefore, it seems that, when the right scales are considered, all random walks behave in the same way
(modulo some constant). This is the content of Donsker’s Invariance Principle (Theorem 2.2), which we
state below. Before doing so, we must first define mathematically what a Brownian motion is.

Definition 2.1. A stochastic process B = {Bt : t ∈ R+} is a one-dimensional Brownian motion if:

1. B0 = 0 almost surely.

2. For any k ∈ N and any 0 ≤ t1 < · · · < tk < ∞, the random variables Bt1 ,Bt2 − Bt1 , ... ,Btk − Btk−1

are independent.

3. For any 0 ≤ s < t < ∞, the random variable Bt − Bs is normally distributed with zero mean and
variance σ2(t − s) for some constant 0 < σ < ∞.

4. The sample paths of the process are continuous everywhere with probability one.

The process B is said to be a standard Brownian motion if σ = 1.

Observe that many of the properties of the random walk are shared by the Brownian motion. An
additional property has been added, which is that the sample paths of the process are continuous with
probability one, however, this is not so important, since, if the first three properties are satisfied, one can
find a version of the process satisfying the fourth one.

3Reports@SCM 9 (2024), 1–9; DOI:10.2436/20.2002.02.37.
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In the case of the random walk, we provided a class of processes (which were determined by the
sequence of random variables {Xj : j ∈ N}) that satisfied the first three properties. However, the same
cannot be done in the case of the Brownian motion, which can be thought as a continuous time version
of the random walk. Hence, we have to first check that such process exists. This is, as well, part of the
content of Donsker’s Theorem, which we now state.

Theorem 2.2 (Donsker’s Invariance Principle). Let {Xj : j ∈ N} be a sequence of independent and
identically distributed centered random variables with unitary variance. Then the random (continuous)
functions

Y
(n)
t =

1

σ
√
n
S̃nt , 0 ≤ t ≤ 1,

where

S̃t =

[t]∑
j=1

Xj + (t − [t])X[t]+1, S̃0 = 0,

converge weakly to a standard one-dimensional Brownian motion, where [t] denotes the integer part of t.

In other words, if Pn are the laws of the random functions Y
(n)
t , then there is a probability measure P (the

Wiener measure) over the space of real continuous functions on [0, 1], C [0, 1], fulfilling the properties from
Definition 2.1 and such that Pn(G ) → P(G ) for any Borel set G of C [0, 1] with P(∂G ) = 0, being ∂G the
boundary of G.

The process S̃ , which resembles quite a lot S , is the linear interpolation of the latter and hence, a
process with continuous sample paths.

The proof of this result (which is a result of convergence of probability measures), relies, mainly, on
Prohorov’s Theorem, which gives a characterization of the family of laws induced by the family of random

functions {Y (n) : n ∈ N}, with Y (n) = {Y (n)
t : t ∈ [0, 1]} in terms of the topological properties of the

space C [0, 1], and the fact that the finite dimensional distributions of a continuous stochastic process
determine its law (we refer to [1, Theorems 5.1, 5.2 and p. 84] for a proof of these claims). A proof of
Theorem 2.2 for a particular case of random walk is given in [2], and a general proof can be found in [1,
Section 8] as well.

With this, we have given an answer to the first of the two questions and now can address the problem
of defining objects like (1).

3. Stochastic differential equations

Before trying to define the concept of solution to equations like (1), which are known as stochastic differ-
ential equations (SDEs), we shall first see how one gets to the point of having to consider such objects.

To do so, let us consider an ordinary differential equation (ODE) of the form

dXt = f (t,Xt) dt, t ≥ 0, (2)

modeling some phenomena which we are interested in and where f : R+ × R → R is some good enough
function.

https://reportsascm.iec.cat4
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In some cases, the description given by the ODE might be a bit too simple or might not take into
account some factors which might have been neglected due to a simplification or due to the fact that
we cannot easily control them. To solve this, one can discretize the ODE and add a random perturbation
which might evolve with time, say V = {Vt : t ∈ R+}, leading to

Xt+∆t − Xt = f (t,Xt)∆t + g(t,Xt)∆Vt , ∆Vt = Vt+∆t − Vt ,

where g : R+ × R → R is some function modelling the intensity of the random perturbation. Usually,
this introduced noise accounts for the superposition of several small (of finite variance) factors which
cannot be controlled. Hence, and due to the Central Limit Theorem, we can assume that the law of the
increments ∆Vt is normally distributed with vanishing mean (since the mean trajectories should coincide
with the one modeled by (2)) and with variance ∆t. The linear dependence on time in the variance is
chosen because, in most scenarios, the observed perturbation can be said to be diffusive.

One can assume, as well, that the random perturbations in discrete time, ∆V0, ∆V∆t , ... are uncorre-
lated or independent since they are supposed to be rapidly varying and hence, what happens in one time
interval might not significantly interfere on what happens in some other time interval.

With all this, one concludes that the best choice for the process V is a standard Brownian motion. The
only think left to do is to take the limit ∆t → 0 to obtain, formally speaking,

dXt = f (t,Xt) dt + g(t,Xt) dBt .

However, and as mentioned in the introduction, the differential dBt makes no sense as a classical one. To
solve this problem, one writes the SDE in its integral form

Xt = X0 +

∫ t

0
f (s,Xs) ds +

∫ t

0
g(s,Xs) dBs . (3)

So the only thing left to do is to give a meaning to expressions
∫ t
0 Xs dBs (stochastic integral) for a suitable

class of stochastic processes X = {Xt : t ∈ R+} to solve the problem.

3.1 Stochastic integrals

The first idea to approach such integrals is to use the already developed theory of integration with respect
to functions (Lebesgue–Stieltjes integral) to define such integrals pathwise. However, the fact that the
sample paths of the Brownian motion are of unbounded variation preclude this option.

For this purpose, a new theory of integration needs to be developed. As in the case of the Riemann–
Stieltjes integral, we will be considering sums of the form

n−1∑
j=0

Xt∗j
(Btj+1 − Btj ), (4)

where 0 = t0 < · · · < tn = T is a partition of a finite time interval [0,T ] and where t∗j ∈ [tj , tj+1),
j = 0, ... , n − 1. Ideally, one would want the above sums to converge to the same limit (this limit might
be in probability or in mean square, for instance) no matter what choice of t∗j is made. Unfortunately, this
is not the case, leading to different definitions of the stochastic integral depending on the choice of the
midpoints t∗j , j = 0, ... , n−1. In this work, we will be considering the left endpoint approximations (t∗j = tj),
which lead to the Itô integral.

5Reports@SCM 9 (2024), 1–9; DOI:10.2436/20.2002.02.37.
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As one might expect, this integral will not be defined for any process X . Returning to the discretization
of the SDE, we have that the information we have on the process X at time t +∆t can be determined by
the information we have on Xt and the information we have on the driving noise (in our case, the Brownian
motion) at time t +∆t. At the same time, the information we have of Xt depends on the information one
has on Xt−∆t and so on. All in all, we see that we can infer the information of Xt at time t by knowing
the entire information of the driving process B until that time. In particular, the information we have on Xt

does not depend on the information we have at time s for s > t, so the process X cannot see into the
future. In this case, we say that the process X must be adapted to the filtration generated by the driving
noise (the information we have on Xt depends on the history of the noise until that time).

Another natural hypothesis on the process X is that it must be integrable in some sense so that we
can talk about its integral. More precisely, we will require that

||X ||2 := E
[∫ T

0
X 2
s ds

]
< ∞.

For this integral to be well defined, we will require, as well, the process X , thought as a map X : Ω×[0,T ] →
R, (ω, t) 7→ X (ω, t) = Xt(ω), where Ω is the sample space, to be jointly measurable with respect to the
corresponding σ-fields.

When all these hypothesis are fulfilled, one can show that integrals like
∫ t
0 Xs dBs can be defined as an

L2(Ω)-limit (mean square limit) of Riemann–Stieltjes sums. To show this, and as it is customary in this
type of constructions, one first defines a class of simple functions of the form

ϕ(ω, t) = ϕt(ω) =
n−1∑
j=0

ej(ω)I[tj ,tj+1)(t), (5)

where {ej : j = 0, ... , n−1} are bounded random variables such that the information we have on ej depends
only on the history of the Brownian motion (the driving noise) until time tj and 0 = t0 < · · · < tn = T .
For such functions, the integral with respect to the Brownian motion is defined as the sum (4), where Xt∗j
must be replaced by ej .

Next, one checks that || · || defines a norm on the space of processes X satisfying the previously
mentioned hypothesis and that such normed space (from now on, the space of Itô integrable processes) is
complete.

Finally, one shows that any process X in the normed space can be approximated by simple functions (5),

which allows us to define the integral
∫ T
0 Xs dBs as an L2(Ω)-limit of integrals of simple processes. To justify

this last step, a crucial result for step functions (which also holds for general Itô integrable processes X ) is
needed. We shall state the result, as it will be useful in the future for other purposes.

Theorem 3.1 (Isometry formula). For any Itô integrable process X , we have

E

[(∫ T

0
Xs dBs

)2
]
= E

[∫ T

0
X 2
s ds

]
.

As its name says, the previous result asserts that the stochastic integral with respect to the Brownian
motion establishes an isometry between the space of square integrable random variables, L2(Ω), and the
space of Itô integrable functions. For a detailed construction of the stochastic integral, we refer to Chapter 3
of [3] and [4].
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Another important feature of this integral is that, when X is a deterministic Itô integrable process (that
is, the map X : Ω× [0,T ] is constant in the first argument), one has that the process I = {It : t ∈ [0,T ]}
defined by It =

∫ t
0 Xs dBs is a Gaussian process. More precisely,

Theorem 3.2. If X = f = {ft : t ∈ [0,T ]} is a deterministic Itô integrable process, then I is a centered
Gaussian process with independent increments such that, for each 0 ≤ s < t ≤ T,

It − Is =

∫ t

s
fs dBs ∼ N

(
0,

∫ t

s
f 2u du

)
.

That is, the increment is normally distributed with zero mean and variance
∫ t
s f 2u du.

With this, the task of giving a meaning to expressions like (3) has been fulfilled. However, we have not
provided any practical way of computing stochastic integrals. This will be the purpose of the Itô formula
(see [3, Chapter 3] again or [4, Chapter 4] for a proof of this result), which can be thought as a chain rule
or as an integration by parts formula, depending on whether you consider the differential or integral form.

Theorem 3.3 (Itô formula). Let X = {Xtt ∈ [0,T ]} be a process defined by

dXt = ft dt + gt dBt

or, in integral form,

Xt = X0 +

∫ t

0
fs ds +

∫ t

0
gs dBs ,

where f = {ft : t ∈ [0,T ]} is a process integrable with respect to the Lebesgue measure with probability
one and g = {gt : t ∈ [0,T ]} is an Itô integrable process, and let F : [0,T ] × R, (t, x) 7→ F (t, x)
be a C1,2 function (continuously differentiable with respect to the first argument and twice continuously
differentiable with respect to the second one). Then, if Yt = F (t,Xt),

dYt =
∂F

∂t
(t,Xt) dt +

∂F

∂x
(t,Xt) dXt +

1

2

∂2F

∂x2
(t,Xt)(dXt)

2

or, in integral form,

Yt = F (0,X0) +

∫ t

0

∂F

∂s
(s,Xs) ds +

∫ t

0

∂F

∂x
(s,Xs) dXs +

1

2

∫ t

0

∂2F

∂x2
(s,Xs)(dXs)

2.

In the previous theorem, the differentials dXt and (dXt)
2 can be treated as if they were finite real

quantities by using the rules dt · dt = dt · dBt = dBt · dt = 0 and (dBt)
2 = dt. Then, for instance, we

have that ∫ t

0

∂F

∂x
(s,Xs) dXs =

∫ t

0

∂F

∂x
(s,Xs)fs ds +

∫ t

0

∂F

∂x
(s,Xs)gs dBs ,

and ∫ t

0

∂2F

∂x2
(s,Xs)(dXs)

2 =

∫ t

0

∂2F

∂x2
(s,Xs)g

2
s ds.

With this, we can now begin to study stochastic differential equations.
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3.2 An existence and uniqueness result

The first thing one must check when one studies equations like (3) (or its differential form), is to make sure
that there is at least one solution and, if possible, to see that it is unique. It turns out that, under similar
hypothesis to the ones used in Picard’s Theorem on the processes g and f , one can show that there is a
unique stochastic process X satisfying equation (3). However, the uniqueness is understood in the sense
that any other process satisfying the SDE is a modification of our solution.

More particularly, we require f and g to be Lipschitz functions and of linear growth with respect to the
second variable for each t ∈ [0,T ]:

|f (t, x)− f (t, y)|+ |g(t, x)− g(t, y)| ≤ C |x − y |, |f (t, x)|+ |g(t, x)| ≤ D(1 + |x |),

for some positive constants C and D, and the initial condition X0 to be deterministic (this last hypothesis can
be relaxed by considering any square integrable initial condition satisfying some measurability properties).
For a precise statement of the result and a proof, we refer to [4, Theorem 5.2.1].

With all this, we can finally study equations like the Langevin one, equation (1), when the noise Ḟt is
identified with the differential of the Brownian motion. In the following section we treat a particular case
of such equations and compute some observable quantities.

3.3 The case of the Langevin equation

Let us consider equation (1) when Ḟt dt = σ dBt for some real constant σ. That is, we consider the equation

dẊt = −µẊt dt + σ dBt ,

for some positive constant µ and some real constant σ. The theorem of existence and uniqueness of
solutions tells us that, for each T ≥ 0 and any deterministic initial condition Ẋ0, there is a unique process
(modulo modifications) Ẋ = {Ẋt : t ∈ [0,T ]} satisfying the above equation. To give an explicit formula
for Ẋt , we multiply the SDE by the integrating factor eµt , which leads to

eµt dẊt + µeµtẊt dt = eµtσ dBt .

The usual product rule would tell us that the left-hand side can be identified with d(eµtẊt). However,
this might not be true in the context of stochastic processes. To make sure that this holds, we apply Itô’s
formula to the function F (t, x) = xeµt , for which we have

∂F

∂t
(t, x) = µxeµt ,

∂F

∂x
(t, x) = eµt ,

∂2F

∂x2
(t, x) = 0.

So, indeed, we have that
d(eµtẊt) = eµt dẊt + µeµtẊt dt = eµtσ dBt

or, in integral form,

Ẋte
µt = Ẋ0 + σ

∫ t

0
eµs dBs .

Which simplifies to

Ẋt = Ẋ0e
−µt + σ

∫ t

0
e−µ(t−s) dBs .
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With this and other results like the isometry formula, we can compute some observable quantities like the
mean, the variance and the covariance. A straightforward computation using the isometry formula shows
that

E[Ẋt ] = Ẋ0e
−µt , E[Ẋ 2

t ] = Ẋ 2
0 e

−2µt +
σ2

2µ
(1− e−2µt), Var(Ẋt) =

σ2

2µ
(1− e−2µt). (6)

Finally, for 0 ≤ s < t, we have, by letting It =
∫ t
0 eµu dBu (observe that the stochastic integral involved is

the one of a deterministic function, so we are under the hypothesis of Theorem 3.2),

Cov(Ẋt , Ẋs) = E[(Ẋt − E[Ẋt ])(Ẋs − E[Ẋs ])]

= σ2e−µ(t+s)E[It Is ]

= σ2e−µ(t+s)E[(It − Is)Is ] + σ2e−µ(t+s)E[I 2s ]

= σ2e−µ(t+s)E[It − Is ]E[Is ] + σ2e−µ(t+s)E[I 2s ]

= σ2e−µ(t+s)

∫ s

0
e2µu du

=
σ2

2µ
(eµ(s−t) − e−µ(t+s)),

where we have used Theorem 3.2 and the isometry formula. Hence, for any s, t ∈ [0,T ],

Cov(Ẋt , Ẋs) =
σ2

2µ
(e−µ|t−s| − e−µ(t+s)). (7)

Moreover, Theorem 3.2 tells us that the process Ẋ is Gaussian with mean and covariance functions given
by the first term in (6) and (7), respectively, and that, for each t ∈ [0,T ], Ẋt is a normal random variable
with mean and variance given by the first and last terms in (6).
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Extensions of the Calderón–Zygmund theory

1. Introduction

By “singular integral operators” we mean, in the first instance, convolution operators in Rn the kernel
function of which presents a singularity, say, at the origin. Namely, we think of operators of the kind

Tf (x) =

∫
Rn

K (x − y)f (y) dy , x ∈ Rn,

for some given function K that blows up at the origin. Singular integrals show up in a number of problems
of analytic nature. For instance, they generate solutions of some partial differential equations, they arise
in complex analysis, they underpin apparently unrelated settings in geometric measure theory, etc. See
Figure 1 for an illustrative example.

∆u = 0 ∆v = 0

f Hf

Figure 1: Appearance of the Hilbert transform (the most iconic example of singular integral in R) in
Dirichlet’s problem for the Laplace equation. First, let f be defined on the axis y = 0. Obtain u such
that ∆u = 0 in the upper half plane and f is the boundary value of u. Then, get the conjugate harmonic
function v of u (the one that turns u(x , y) + i v(x , y) into a holomorphic function on the complex plane).
Finally, obtain the Hilbert transform of f , Hf , by computing the limit lim

y→0
v(x , y).

For decades, analysts felt uncomfortable when utilising singular integrals because there was no knowl-
edge regarding their boundedness properties. Were they handling continuous operators on Lp spaces or
not? In order to answer this question, Harmonic Analysis is the natural framework.

In the middle and end of the 20th century, the field experienced a burst. Brilliant mathematicians
contributed to the expansion of the theory concerning singular integrals. Calderón, Zygmund, Bourgain
and Stein are just some of the most influential driving forces in the field, who built upon the work of other
great figures like Hardy, Littlewood and Paley.

In the literature, singular integrals are ubiquitous, as they serve to step forward at stages within problems
of different natures. Despite this, theory of singular integrals is often just partially explained and treated
as an instrument. In this document, we centre them in the spotlight.

2. Calderón–Zygmund theory

The Calderón–Zygmund theory was developed originally in the setting of Rn in the 1950s, set off by
the collaborative breakthrough paper [3] published in 1952. It aimed to prove boundedness of singular
convolution-type operators on spaces of functions (mainly Lp spaces) built over Rn.
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The starting point is a decomposition lemma that, given an integrable function, enables to split the
domain Rn into a set where the function is bounded, and another set where, although the function may be
unbounded, it is controlled in average.

Lemma 2.1 (Calderón–Zygmund lemma in Rn; see [5, Chapter 1, Theorem 4]). Let f ∈L1(Rn) and λ > 0.
There exists a partition Rn = F ⊔ Ω, such that

(a) |f (x)| ≤ λ a.e. x ∈ F , and

(b) Ω can be written as a countable union of cubes Qk with disjoint interior Ω =
⊔

k∈NQk , moreover
satisfying

λ ≤ 1

|Qk |

∫
Qk

|f (x)| dx ≤ 2nλ, ∀ k ∈ N. (1)

Proof. Mesh Rn into a set of cubes {Q0
k}k∈N with disjoint interiors and of the same size, large enough so

that the averages of |f | are bounded above by the given λ on all of the cubes in the mesh:

1

|Q0
k |

∫
Q0

k

|f (x)| dx < λ, ∀ k ∈ N.

This is possible because f is integrable,

1

|Q0
k |

∫
Q0

k

|f (x)| dx ≤ ∥f ∥1
|Q0

k |
,

so choose the size of the cubes such that |Q0
k | >

∥f ∥1
λ .

We are going to run an algorithm in order to construct F and Ω. Set Ω = ∅ and the step s = 1. We
split each of the cubes Q0

k into 2n dyadic descendant cubes of the same size Q1
k .

Case 1: For each descendant cube in step s (that is, for each k ∈ Z), if

1

|Qs
k |

∫
Qs

k

|f (x)| dx > λ,

then Qs
k is selected to take part in the set Ω, so update Ωnew = Ωold ∪ Qs

k . For such a cube Qs
k , assume

that Qs−1
r is its direct ancestor. Then, by (2) and the fact that Qs−1

r fell into Case 2,

λ <
1

|Qs
k |

∫
Qs

k

|f (x)| dx ≤ 2n

|Qs−1
r |

∫
Qs−1

r

|f (x)| dx ≤ 2nλ, (2)

which proves (1) for Qs
k .

Case 2: Instead, if
1

|Qs
k |

∫
Qs

k

|f (x)| dx ≤ λ,

then we iterate and further divide Qs
k into 2n identical descendant cubes (each with half the sidelength of

the ancestor), and check into which of the two cases each of them falls.
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Update snew = sold + 1 and let the algorithm run recursively. This way, we obtain the desired parti-
tion Rn = F ⊔Ω, Ω being the union of all those cubes that fell into Case 1, and F being the complement
of Ω. Plus, (b) has been verified for all cubes Qs

k that were selected for Case 1. Fact (a) follows from the
Lebesgue differentiation theorem: if x ∈ F , this means that there exists a sequence of nested dyadic cubes
containing x , (Qs

k(s))s∈N, (Q
s
k(s)) ⊃ (Qs+1

k(s+1)) being direct dyadic descendants ∀ s ∈ N, such that all of
these cubes fell into Case 2, implying that

f (x) = lim
s→∞

1

|Qs
k(s)|

∫
Qs

k(s)

|f (y)| dy ≤ λ.

This decomposition of the domain Rn of f leads to a useful decomposition of the function f itself. By
defining

g(x) :=


f (x), x ∈ F ,

1

|Qk |

∫
Qk

f (x) dx , x ∈ Qk ,

and b(x) := f (x)− g(x), we reach the following corollary.

Corollary 2.2 (See [5, Chapter 2, Theorem 1]). Let f ∈ L1(Rn) and λ > 0. There exists a decomposition
of f as sum of two functions, f = g + b such that:

(a) g(x) ≤ 2nλ a.e. x ∈ Rn,

(b)
1

|Qk |

∫
Qk

b(x) dx = 0 ∀ k ∈ N,

(c)
1

|Qk |

∫
Qk

|b(x)| dx ≤ 2nλ ∀ k ∈ N,

(d) supp(b) =
⊔

k∈NQk and

(e) b ≤ f a.e.

The functions g and b are usually referred to as the “good” and the “bad” part of f . Corollary 2.2 is
the key ingredient to prove Theorem 2.4, that allows us to bound singular integral operators. However, as
one may guess, we first need to make some assumption on the regularity of the singular kernel function.
The minimal known hypothesis that succeeds is the so-called Hörmander’s condition.

Definition 2.3. A convolution kernel K on Rn is said to satisfy Hörmander’s condition if

B := sup
|y |>0

∫
|x |≥2|y |

|K (x − y)− K (x)| dx <∞. (3)

Since the integral is computed over the region {x ∈ Rn : |x | > 2|y |}, the singularity of the kernel is
avoided both for x − y and for x . In some sense, we are asking that the global variation of the kernel is not
so wild that is not integrable. Nevertheless, Hörmander’s condition is usually seen as a weakened version
of the stronger condition

|∇K (x)| ≤ C

|x |n+1
,

for all x ∈ Rn away from the origin. All in all, here is the theorem that gives meaning to the theory. In the
literature, one can find many variations and consequences of it.
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Theorem 2.4 (See [5, Chapter 2, Sections 2 and 3]). Let T be a linear operator such that there exists a
measurable kernel function K such that

Tf (x) =

∫
Rn

K (x − y)f (y) dy

converges absolutely whenever f ∈ L2(Rn) and x /∈ supp(f ). Suppose the following:

(i) T is bounded on L2(Rn): there exists A > 0 such that for all f ∈ L2(Rn), ∥Tf ∥2 ≤ A∥f ∥2.

(ii) The kernel K satisfies Hörmander’s condition (3) with constant B.

Then,

(a) T is bounded on Lp(Rn), 1 < p <∞, and

∥Tf ∥p ≤ Cn,p∥f ∥p,

for f ∈ Lp(Rn) and Cn,p > 0 only depending on n, p, A and B.

(b) T is weak-type (1, 1), i.e., for all λ > 0 and f ∈ L1(Rn),

λ|{x ∈ Rn : |Tf (x)| > λ}| ≤ Cn∥f ∥1,

where Cn > 0 is a constant only depending on the dimension n, A and B.

The strategy for the proof is, accounting for the boundedness assumption on the Hilbert space L2(Rn),
using the Calderón–Zygmund lemma to first show (b), i.e., that T is weak-type (1, 1). After that, one
can use the Marcinkiewicz interpolation theorem between p = 1 and p = 2 to get (a) for 1 < p ≤ 2.
Eventually, a duality argument covers the dual range 2 ≤ p <∞.

3. Extensions of the theory

In view of Theorem 2.4, it is natural to wonder if it admits generalisations to other settings. Indeed, under
suitable conditions, it is possible to extend the theorem, on the one hand, to other measure metric spaces,
and on the other hand, to vector-valued functions. The first setting is useful, for example, in the theory
of parabolic PDEs, whereas the latter generalisation turns out to be handy to study maximal operators or
operators of the kind “square functions”. In this section, we present such an abstraction accounting for the
combination of both extensions.

Definition 3.1. A measure metric space ((X , d), Σ,µ) is said to have the doubling property if

µ(B2r (x)) ≤ Cµ(Br (x)), ∀ r > 0, x ∈ X ,

C > 0 being a universal constant for the space X . This is, measures of dilated balls are comparable.

The doubling property is crucial if we need available inequalities of the kind (2). Along this section,
((X , d), Σ,µ) denotes a generic σ-finite measure space over a metric space equipped with a regular measure
enjoying the doubling property.

Next, note that in an arbitrary metric space, cubes are not available anymore, but only balls. Therefore,
the proof of Lemma 2.1 completely breaks apart, since it relies heavily on meshing Rn into cubes. This
implies that the strategy to get a lemma of the same flavour has to be totally different. To this end, the
Hardy–Littlewood maximal function aids.
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Definition 3.2. Let ((X , d), Σ,µ) be a measure metric space and let f ∈ L1loc(X ) be a locally integrable
function. The centred Hardy–Littlewood maximal function of f is defined as

Mf (x) := sup
r>0

1

µ(Br (x))

∫
Br (x)

|f (y)| dµ(y). (4)

Similarly, the uncentred Hardy–Littlewood maximal function of f reads as

Muncf (x) := sup
B∋x

1

µ(B)

∫
B
|f (y)| dµ(y),

where the supremum is taken over all balls B containing x .

When the doubling property is in force, then the centred and uncentred version are easily checked
to be comparable. It is also remarkable to note that the Hardy–Littlewood maximal function defines a
bounded operator on Lp spaces, 1 < p < ∞ ([5, Chapter 1, Theorem 1]). In fact, in order to show
Lp-boundedness for a broad class of so-called Calderón–Zygmund operators (those under the hypotheses
of Theorem 2.4 or Theorem 3.5), one can first show, as pointed out, that the Hardy–Littlewood maximal
function is Lp-bounded, and then use this specific result to prove Lp-boundedness for the broad class of
Calderón–Zygmund operators.

Lemma 3.3 (Calderón–Zygmund lemma in the general setting; see [7, Chapter 1, Theorem 2]). Let f ∈
L1(X ) and λ > 0. There exists a partition of the space X = F ⊔ Ω, F being a closed set and Ω an open
set, such that

(a) |f (x)| ≤ λ a.e. x ∈ F , and

(b) Ω can be written as a countable disjoint union of smaller sets Ω =
⊔

k∈NΩk moreover satisfying

1

µ(Ωk)

∫
Ωk

|f (x)| dµ(x) ≤ Cλ, ∀ k ∈ N,

for some constant C > 0.

Proof. Let f ∈ L1(X ) and fix λ > 0. Choose F := {x ∈ X : Mf (x) ≤ λ} and so Ω := {x ∈ X : Mf (x) >
λ}, being respectively closed and open, because Mf (x) is a continuous function of x .

By the Lebesgue differentiation theorem, for a.e. x ∈ F ,

λ ≥ Mf (x) = sup
r>0

1

µ(Br (x))

∫
Br (x)

|f (y)| dµ(y) ≥ lim
r→0

1

µ(Br (x))

∫
Br (x)

|f (y)| dµ(y) = |f (x)|,

so (a) is shown.

Let us introduce some notation. For a ball B = Br (x) centred at x with radius r and for some universal
constants 0 < C ∗ < C ∗∗, denote by B∗ := BC∗r (x) and B∗∗ := BC∗∗r (x) the centred dilations by
factors C ∗ and C ∗∗, respectively. In order to prove (b), we use a Vitali-type covering lemma ([7, Chapter 1,
Lemma 2]): given the closed set F , there exists a sequence of balls (Bk)k∈N and two families of each
dilations (or universal dilation constants 0 < C ∗ < C ∗∗ ), (B∗

k )k∈N and (B∗∗
k )k∈N, such that

(a) (Bk)k∈N are pairwise disjoint,

(b)
⋃

k B
∗
k = F c , and

(c) B∗∗
k ∩ F ̸= ∅, ∀ k .
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It is convenient to extract another sequence of sets. Take the first element in (B∗
k )k∈N and define Q1 := B∗

1 .
Next, define Q2 := B∗

2 ∖ (Q1). By an inductive process, build

Qk := B∗
k ∖

(
k−1⋃
j=1

Qj

)
.

It is directly deduced that the sets Qk satisfy
⋃

k Qk = F c just like the B∗
k , although with the advantage

that the Qk are pairwise disjoint. The downside, compared to the B∗
k , is that the Qk are no longer balls,

but other less elementary sets. The name Qk of such new sets is inspired by their role in the proof of
Theorem 3.5, which mimics the one carried out by the cubes in the proof of the X = Rn case.

Now, for each Bk in the sequence (Bk)k∈N, choose a point pk ∈ B∗∗
k ∩ F . By the definition of F ,

λ ≥ Mf (pk) ≥ CuncMuncf (pk) ≥
Cunc

µ(B∗∗
k )

∫
B∗∗
k

|f (x)| dµ(x)

≥ Cunc

µ(B∗∗
k )

∫
Qk

|f (x)| dµ(x) ≥ Cunc

Cdp

1

µ(Qk)

∫
Qk

|f (x)| dµ(x),
(5)

where Cdp is the constant from the doubling property (see Definition 3.1) and Cunc is the constant in the
equivalence

Mf ≤ Muncf ≤ CuncMf .

In fact, Cunc = (Cdp)−1. The two last inequalities in (5) stem from the fact that Bk ⊆ Qk ⊆ B∗∗
k

and the doubling property: µ(Qk) ≤ µ(B∗∗
k ) ≤ Cdpµ(Bk) ≤ Cdpµ(Qk). Since (Qk)k∈N partition Ω,

Ω =
⊔

k Ωk ≡
⊔

k Qk , the proof is complete.

Note that this proof unveils the precise identity of the sets F and Ω, which are defined in terms of the
Hardy–Littlewood maximal function.

In exactly the same way as in Corollary 2.2, the Calderón–Zygmund decomposition of an integrable
function f ∈ L1(X ) as f = g + b is deduced.

We mentioned that we wish our generalised theorem to hold for vector-valued functions. The construc-
tion of the Lp spaces for such functions is nowadays standard ([4, Chapter 5]). Let us denote by LpB(X )
the Lebesgue space of Lp-integrable functions on some measure space X and taking values in the Banach
space B. This is, for 1 ≤ p <∞, set

LpB(X ) :=

{
F : X → B :

∫
X
∥F (x)∥pB dµ(x) <∞

}
,

whereas for p = ∞,

L∞B (X ) :=

{
F : X → B : ess sup

x∈X
∥F (x)∥B <∞

}
.

Additionally, denote by L(A,B) the Banach space of all linear and continuous maps between Banach
spaces A and B.

Note that what has been presented so far in this section also applies to Banach-valued functions.

In order not to scatter away from the theory, we need to upgrade Hörmander’s condition on kernel
functions as follows. In particular, note that the kernel is no longer a function, but rather a linear operator
between Banach spaces.
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Definition 3.4. Let A and B be Banach spaces. An operator kernel K on the product measure space
((X , d), Σ,µ)× ((X , d), Σ,µ) taking values in L(A,B) is said to satisfy Hörmander’s condition if

D := sup
y ,y0∈X

∫
d(x ,y)≥Cd(y ,y0)

∥K (x , y)− K (x , y0)∥L(A,B) dµ(x) <∞, (6)

for some constant C > 1.

Another important remark is that now, the kernel operator involves two entries instead of just one,
compared to the convolution operators. The reason for this is that “x − y” does not make sense in general
measure metric spaces, since they lack the vector space structure. Thus, we get around this issue by
inputting two variables x ∈ X and y ∈ X , with the understanding that the kernel is singular around x = y .

Astonishingly, the natural generalisation of Theorem 2.4 turns out to work in this setting as well!

Theorem 3.5 (See [7, Chapter 1, Theorem 3] and [4, Chapter 5, Theorem 3.4]). Let ((X , d), Σ,µ) be a
measure metric space with the doubling property. Let A, B be Banach spaces and let T be a linear operator
which is represented by

TF (x) =

∫
X
K (x , y)F (y) dµ(y),

whenever F ∈ L∞A (X ) with compact support and x /∈ supp(F ), where the vector-valued kernel K ∈ L(A,B)
is measurable in X × X and locally integrable away from the diagonal. Assume that

(i) T is bounded from LqA(X ) to LqB(X ) for a fixed 1 < q ≤ ∞: there exists Cq > 0 such that for all
F ∈ LqA(X ), ∥TF∥LqB(X ) ≤ Cq∥F∥LqA(X ), and

(ii) the operator kernel K satisfies Hörmander’s condition in (6) with constants C and D.

Then,

(a) the operator T has a bounded extension mapping LpA(X ) to LpB(X ), with 1 < p < q. Furthermore,

∥TF∥LpB(X ) ≤ Cp∥F∥LpA(X ), 1 < p < q,

for F ∈ LpA(X ) and Cp > 0 only depending on p, q, Cq, C and D.

(b) The operator T has a bounded weak-type (1, 1) extension that satisfies

λµ({x ∈ X : ∥TF (x)∥B > λ}) ≤ C1∥F∥L1A(X ), ∀λ > 0,

for F ∈ L1A(X ) and C1 > 0 only depending on q, Cq, C and D.

The proof follows the strategy of that of Theorem 2.4, just this time using Lemma 3.3 instead of
Lemma 2.1, and caring about the technical details of working in the general case.

Here is an example of operator that falls under the scope of the theory.

Example 3.6 (Smooth Littlewood–Paley square function). Let Pj be smooth Littlewood–Paley projectors.
Namely, the Pj are defined as multipliers on the Fourier side:

P̂j f (ξ) := ψ(2−jξ)f̂ (ξ), ∀ j ∈ Z.
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Here, ψ is a smooth compactly supported function, the dyadic dilations of which form a partition of unity
in frequency. This way, Pj f captures the “part” of f with frequencies around 2j .

The operator

Sf (x) :=

(∑
j∈Z

|Pj f (x)|2
) 1

2

is named smooth Littlewood–Paley square function.

First of all, we like to think of the square function as the norm of an operator acting on vector-valued
functions S : Lp(Rn) → Lp

ℓ2
(Rn): Define

P(f ) := (Pj f )j∈Z = (... ,P−1f ,P0f ,P1f , ... )

= (... , 2−nψ̌(2−1ξ) ∗ f (x), 20ψ̌(20ξ) ∗ f (x), 2nψ̌(21ξ) ∗ f (x), ... ),

which is a linear operator mapping functions to sequences of functions.1 Accordingly,

Sf (x) = ∥Pf (x)∥ℓ2(Z).

We brought the square function to the vector-valued setting. At this point, one would attempt to apply
Theorem 3.5 to Sf . Nonetheless, a direct application fails to show that Sf is bounded on Lp(Rn) for 1 <
p < ∞. It is necessary to combine Theorem 3.5 with a probabilistic trick involving Rademacher random
variables to eventually show that Sf is bounded on Lp(Rn) for 1 < p <∞.

4. Beyond the paradigm

Together with the development of the Calderón–Zygmund theory as well as its extensions, new problems
arose in the field. In particular, interest was shown in singular measure operators. The reason for this interest
relies on the thirst for understanding other appealing problems like the Kakeya problem, the Bochner–Riesz
conjecture or the Fourier restriction problem, which still remain mysterious and open. Let us give an example
in this direction of an operator that is still not completely understood.

Definition 4.1. Let f : Rn → R be a measurable function in Rn. Define the dyadic spherical maximal
function as

S̃f (x) := sup
k∈Z

∫
Sn−1

f (x − 2kω) dσ(ω), ∀ x ∈ Rn, (7)

where Sn−1 ⊂ Rn is the unit sphere, σ is the surface measure of Sn−1 and ω ∈ Sn−1 is a unit vector.

The (non-maximal) spherical means appear in the expression for the solution to the Cauchy problem
of the wave equation in odd space dimension. The interest in studying its maximal versions relies on
the availability of a standard strategy to prove pointwise convergence results of the solution to the wave
equation towards the initial datum.

The operator (7) is similar to the Hardy–Littlewood maximal function (4) in the sense that, instead of
averaging over balls, it averages over spheres. However, the surface measure of Sn−1 in Rn is a singular

1One can play the same trick with maximal functions. For instance, Mf (x) = ∥A(x , ·)f ∥L∞(R>0), where A(x , r)f denotes
the average of f on the ball centred at x of radius r .
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measure, in the sense that all of its mass is concentrated on a null n-Lebesgue measure manifold. Fur-
thermore, (7) can be seen as a convolution of a function f against a (singular) measure, but not another
function anymore. This brings obstacles to our understanding of the spherical maximal function, because
the Calderón–Zygmund theory from previous sections does not apply anymore.

In this case, the radii are discretised. It is of course of interest to take supremum over the continuum r >
0. In that case, the spherical maximal function has been understood deeply and it turns out that the
boundedness properties depend on the dimension [1, 6]. Up to the date, we know that this dyadic version
defines indeed a bounded operator on Lp(Rn). Nonetheless, we do not know whether it is weak-type (1, 1).

Theorem 4.2 (See [2]). The dyadic spherical maximal operator S̃f is bounded in Lp(Rn) for 1 < p ≤ ∞.
This is, for f ∈ Lp(Rn),

∥S̃f ∥p ≤ Cp∥f ∥p,

for some constant Cp > 0 depending on p and n.

Conjecture 4.3. The dyadic spherical maximal operator S̃f is weak-type (1, 1). So for any λ > 0 and
f ∈ L1(Rn),

λ|{x ∈ Rn : S̃f (x) > λ}| ≤ C1∥f ∥1,

for some constant C1 > 0 depending on n.
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Survey on optimal isosystolic inequalities on the real projective plane

1. Riemannian and Finsler metrics

Riemannian manifolds, introduced in the second half of the 19th century by Bernhard Riemann, are man-
ifolds endowed with a scalar product on each tangent space. Usually, one works with an n-dimensional
smooth manifold M and a Riemannian metric gx : TxM × TxM → R, denoting a scalar product that
varies smoothly with x ∈ M. This scalar product gives rise to a norm on tangent vectors, by setting
∥v∥gx =

√
gx(v , v), and to a length for curves γ : [0, 1] → M, by setting ℓg (γ) =

∫ 1
0 ∥γ′(t)∥gγ(t) dt. The

scalar product can alternatively be represented in a local chart by a collection of n × n positive definite
and symmetric matrices (gij(x))ij . That way, the canonical Riemannian measure dvg of (M, g) in this local
chart is given by the formula dvg (x) =

√
det(gij(x)) dx1 ∧ · · · ∧ dxn.

Finsler manifolds are a generalisation of Riemannian manifolds, where each tangent space is endowed
with a norm instead of with a scalar product. These metric structures were first considered in 1918 by Paul
Finsler, although the term Finsler manifold was coined later by Élie Cartan, in 1934. Usually a norm ∥·∥
is a map from a vector space to R+ = [0,∞) that fulfils the following conditions: ∥v∥ = 0 only if v = 0,
∥λv∥ = |λ|∥v∥ for λ ∈ R and ∥v+v ′∥ ≤ ∥v∥+∥v ′∥. In Finsler geometry, non-necessarily symmetric norms
are considered more generally by replacing the second property by the condition ∥λv∥ = λ∥v∥ for λ ∈ R+.
The structure associated to a varying norm on each tangent space is called a Finsler metric and the norm
at some point x is usually denoted by Fx . In analogy to the Riemannian case, one defines the length of
a curve γ : [0, 1] → M by ℓF (γ) =

∫ 1
0 Fγ(t)(γ

′(t)) dt. However, and in contrast to the Riemannian case,
there is no unambiguously defined volume notion for Finsler metrics. Two of the most used ones are the
Holmes–Thompson and the Busemann–Hausdorff volumes. The former is related to the standard symplectic
form on T ∗M, and, the latter, to the Hausdorff measure of a metric space in the symmetric case. From
now on, only 2-dimensional manifolds will be considered. Fixing an auxiliary Riemannian metric g on M,
the Holmes–Thompson and Busemann–Hausdorff areas are defined as

areaHT(M,F ) :=
1

π

∫
M
|B◦

x |g dvg , and

areaBH(M,F ) := π

∫
M

1

|Bx |g
dvg , respectively.

(1)

Here, |Bx |g denotes the Riemannian measure of the unit ball Bx = {v ∈ TxM | Fx(v) ≤ 1}, and B◦
x its

polar convex body with respect to gx . Note that a Finsler metric F is uniquely defined specifying the unit
spheres Ux = {v ∈ TxM | Fx(v) = 1} at each point x ∈ M.

Definition 1.1. A Finsler metric F on M is said to be reversible if Fx(v) = Fx(−v) for all (x , v) ∈ TM.
In other words, F is said to be reversible if all the unit balls are centrally symmetric.

Since a scalar product induces a symmetric norm on each tangent space, Riemannian metrics are a
particular case of Finsler metrics. As sketched in [5, Proposition 3.5], the definitions in (1) are independent
of the chosen auxiliary Riemannian g , and an easy consequence of the Blaschke–Santaló inequality is the
following.

Proposition 1.2. If F is a reversible Finsler metric on a manifold M, then areaBH(M,F ) ≥ areaHT(M,F )
and equality holds if and only if F comes from a Riemannian metric.
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2. Isosystolic inequalities

In either the Riemannian or Finsler case, there is a notion of length of curves, and for closed manifolds that
are not simply connected one can define the following notion of systole.

Definition 2.1. The systole of a Finsler closed manifold (M,F ) which is not simply connected is defined
by

sys(M,F ) := inf{ℓF (γ) | γ is a non-contractible loop in M}.

One expects that the area of a Finsler manifold for which all non-contractible loops have a length
uniformly bounded from below cannot be made arbitrarily small. This is described by an inequality of the
form

area(M,F ) ≥ C sys2(M,F )

holding for some set of metrics F , where C is some positive constant. Such an inequality is called an
isosystolic inequality and the constant might depend on the set of metrics considered. Usually one considers
either Riemannian metrics, reversible Finsler metrics or all Finsler metrics. An isosystolic inequality is said
to be optimal if the constant C cannot be improved. Finally, it is said that there is systolic freedom if such
a positive constant does not exist.

The first optimal isosystolic inequality was found for the 2-torus in 1949 by Charles Loewner. As it
is explained by his student Pao Ming Pu at the end of [6], Loewner found it during the lectures of a
course on Riemannian geometry he was teaching at the time. He proved that for any Riemannian metric g

on the 2-torus, area(T2, g) ≥
√
3
2 sys2(T2, g), and that the constant

√
3
2 is optimal. Inspired by Loewner’s

method, Pu proved in [6] that for the real projective plane area(RP2, g) ≥ 2
π sys2(RP2, g) for any Rieman-

nian metric g and that the constant 2
π is also optimal. For the case of Finsler metrics and the 2-torus, a

complete summary of optimal isosystolic inequalities is done in [2]. This article gathers all known optimal
constants, including the ones for Riemannian, reversible Finsler and not-necessarily reversible Finsler met-
rics for both Holmes–Thompson and Busemann–Hausdorff areas. There, T2 is identified with the quotient
of the Euclidean plane R2 by the integer grid Z2. In that case, a metric on T2 is just a metric on R2

compatible with the quotient map, and non-contractible loops in T2 correspond to paths between points
in R2 that differ by some z ∈ Z2 \{(0, 0)}. The strategy followed in the article is to reduce the general case
to the case where the metric is flat, in the sense that the unit balls in TxT2 are the same for all x ∈ T2.
Then, the inequality is most of the times a consequence of previously known results in convex geometry.
See [2] for all the details.

2.1 The real projective plane

Pu, in [6], followed an analogous procedure to what Loewner did with T2 but for RP2, so it might be
interesting to explicit a parallelism between RP2 and T2. What is the universal covering map of RP2?
How can non-contractible loops in RP2 be characterised? Is there an analogous notion of flat metric
for RP2 that makes computations easier? To answer the first question, recall that RP2 can be defined as
a quotient space identifying antipodal points on the 2-sphere S2, as is shown in Figure 1. The quotient
map S2 → RP2 ∼= S2/{± Id} is the universal covering map over RP2 since S2 is simply connected, and
plays an analogous role to the quotient map R2 → T2 ∼= R2/Z2.
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S2

⇝

RP2

Figure 1: Universal covering map S2 → RP2.

Alternatively, one could identify RP2 with a 2-disc D that has antipodal points on ∂D identified. When
it comes to the characterisation of non-contractible loops, it can be shown that non-contractible loops
in RP2 lift to paths in S2 joining antipodal points. See the illustration in Figure 2 for an intuitive idea and
see, for instance, [5, Proposition 2.1] for a proof. More precisely, the condition of being non-contractible
might be translated to the disc representation noting that a path in S2 from a point to its antipodal point
must cross the horizon an odd number of times. As a subtlety, if the start and endpoints lie in the horizon,
the open curve excluding these two points must cross the horizon an even number of times. Then, if starting
and ending at points of the horizon counts as another cross, non-contractible loops in RP2 are characterised
by crossing the horizon an odd number of times. Crossing the horizon is translated to jumping between
opposite points of ∂D, so non-contractible loops in RP2 are characterised by having an odd number of
these jumps.

S2

⇝

RP2

Figure 2: Correspondence between loops in RP2 and their lifts to S2.

Because translations are isometries of the Euclidean plane, a given convex body can be parallel trans-
ported from a point to another consistently to define a notion of flat Finsler metric on the 2-torus. Tangent
vectors of S2 could also be parallel transported to another point. However, the transported vector will
depend on how the parallel transport is performed. Thus, in order to get a well-defined notion of invariant
metric on S2, one needs to assume the convex body to be rotationally invariant. In this special case, the
metric is said to be a round metric on RP2, and can be alternatively defined as some multiple of the
Riemannian metric obtained from the natural embedding of S2 in R3 as the unit Euclidean sphere. These
metrics will play a similar role for RP2 compared to the role that flat Finsler metrics play on T2, although
round metrics are much more restricted.
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2.2 Previously known inequalities

As already mentioned, Pu proved in [6] that area(RP2, g) ≥ 2
π sys2(RP2, g) for any Riemannian metric

and that equality holds if and only if g is isometric to a round metric on RP2. See [5, Section 4] for a
proof that uses a more modern style, similarly to how the T2 case is treated in [2]. Note that in both cases
equality holds for a flat or round metric, although for Pu’s inequality all round metrics on RP2 are optimal
while for Loewner’s inequality only some flat metrics on T2 are optimal. In both cases, the procedure is to
note that, by the uniformisation theorem, any metric is isometric to a conformal multiple of a flat or round
one. Then, one observes that averaging the conformal factor gives a multiple of the flat or round metric,
while it leaves the area invariant but increases the systole. Finally, the inequalities follow from the optimal
flat or round metric cases. It can be computed that area(RP2, g) = 2

π sys2(RP2, g) for any round metric
on RP2 (see for instance [5, Section 4.2]). For the case of T2, before concluding, one must prove that the
same isosystolic inequality holds also for any flat metric g . This is not as straightforward as for RP2, but
it is equivalent to finding the Hermite constant γ2, as is explained in [2].

Ivanov proved in [4] that areaHT(RP2,F ) ≥ 2
π sys2(RP2,F ) also holds for reversible Finsler metrics.

The idea of the proof is first to consider a non-contractible loop γ0 on RP2 such that ℓF (γ0) = sys(RP2,F ),
which can be done by compactness arguments. Such loops are usually called systolic loops. As is shown
in Figure 2, the union of the two lifts of γ0 divides the 2-sphere in two 2-discs. Considering the pullback
metric φ on one of the discs D, the inequality is reduced to finding an inequality between areaHT(RP2,F ) =
areaHT(D,φ) and the length of ∂D. Introducing cyclic maps f = (f1, ... , fn), Ivanov proves that

areaHT(D,φ) ≥
1

2π

∫
∂D

n∑
i=1

fi · dfi+1. (2)

Finally, Ivanov notes that for cyclically ordered and equidistant points {pi}ni=1 ⊆ ∂D, the choice fi (x) =
dφ(pi , x) leads to a cyclic map. See [4, Section 3] for the definition, properties and examples of cyclic
maps. Under the assumption of a reversible metric,

∫
∂D fi · dfi+1 is easy to compute using an arc-length

parametrisation of ∂D. In fact, it amounts to computing the signed area of the curve shown in Figure 3a.

The signed area of each rectangle is 4 sys2(RP2,F )
n

(
1− 2

n

)
, which leads to

areaHT(RP2,F ) = areaHT(D,φ) ≥
2

π
sys2(RP2,F )

(
1− 2

n

)
. (3)

The proof is concluded noting that n can be chosen arbitrarily large. Ivanov’s result and Proposition 1.2
imply that areaBH(RP2,F ) ≥ 2

π sys2(RP2,F ) for any reversible Finsler metric. Note that the inequality is
optimal in both cases, because equality holds for any round metric on RP2, which is Riemannian.

Round metrics do not seem to be relevant for Ivanov’s result. Nevertheless, they play an important role
in the case of T2. A stable norm on TxT2, introduced in [3], is defined as ∥z∥x = limk→∞

d(x ,x+kz)
k for z ∈

Z2. This norm depends on the original Finsler metric on T2 ∼= R2/Z2, and it can be shown to be independent
of x . This means that the stable metric is flat, and it turns out that areaHT(T2,F ) ≥ areaHT(T2, ∥·∥) and
sys(T2,F ) = sys(T2, ∥·∥). Moreover, as is proven in [2], areaBH(T2,F ) ≥ areaBH(T2, ∥·∥) also for reversible
metrics. Thus, all these optimal isosystolic inequalities reduce to their respective flat cases. Following what
is explained in [2], Minkowski’s first theorem implies that areaBH(T2,F ) ≥ π

4 sys
2(T2,F ) for reversible and

flat metrics, being optimal for the supremum norm. Due to a theorem by Mahler, the areas of a symmetric
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convex ball and its dual are related by |Bx | · |B◦
x | ≥ 8, being also optimal for the supremum norm. This

implies that areaHT(T2,F ) ≥ 2
π sys2(T2,F ) is optimal for flat and reversible metrics. By the properties of the

stable norm one deduces that the previous optimal inequalities for flat and reversible metrics are also valid
for any reversible metrics. As a final comment, the optimal isosystolic inequalities for areaHT(T2,F ) and
areaBH(T2,F ) are different for the reversible case, in contrast with the case of RP2. This is because, among
Finsler metrics, optimal metrics F0 for T2 are not Riemannian, and satisfy areaBH(T2,F0) > areaHT(T2,F0)
by Proposition 1.2, while optimal metrics for RP2 are the round ones, which are Riemannian.

3. Systolic freedom for Busemann–Hausdorff area

Minkowski’s theorem prevents symmetric convex bodies K ⊆ R2 such that int(K ) ∩ Z2 = {(0, 0)} from
having a Lebesgue measure |K | > 4, as is explained in [2, Section 3]. The condition int(K )∩Z2 = {(0, 0)}
ensures that the flat metric F with unit ball K fulfils sys(T2,F ) ≥ 1. This key fact implies the optimal
inequality for the Busemann–Hausdorff area and reversible metrics. However, for non-symmetric convex
bodies the theorem no longer applies. In fact, as is proven in [2, Section 3.2], there exists a family of flat

metrics Fε such that sys(T2,Fε) = 1 and |Kε| = (1+ε)2

2ε for the corresponding unit ball Kε. By definition of
the Busemann–Hausdorff area, letting ε → 0 allows one to have areaBH(T2,Fε) arbitrarily small, proving
systolic freedom.

2s
n s − 2s

n
s

2s
n

s − 2s
n

s

(a) Here s denotes sys(RP2,F ).

ε

L

−1 1

(b) The upper direction points to the pole.

Figure 3: In the left, curves in R2 whose signed areas give the result of the individual integrals in (2). In
the right, unit balls along the meridians of the hemisphere.

For the case of RP2, an analogous procedure would be to look for arbitrarily large unit balls that do not
lead to an arbitrarily small value for the systole. This is proven to be possible in [5, Section 6], which leads
to the conclusion that systolic freedom also holds in the non-reversible case for areaBH. The idea behind the
construction in [5] is to build a metric in a hemisphere of S2 such that the equator contains a systolic loop
of some fixed length. In order to have a small value for areaBH(RP2,F ), one needs to have large unit balls
in great part of the hemisphere of S2. However, these large unit balls (which lead to short distances) must
be such that a systolic loop still lies inside the equator. This is done with unit balls of arbitrarily large size L
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in one direction and arbitrarily small size ε in the opposite direction, as is shown in Figure 3b. These balls
are allowed to be arbitrarily large and they prevent curves that go towards the pole from being too short.
Note that they are convex sets containing the origin, so they correspond to some non-reversible Finsler
metric. The final step is to make such a metric on a hemisphere of S2 well-defined and compatible with a
metric on RP2. First of all, one needs to have a well-defined unit ball at the pole: it cannot depend on the
meridian that approaches the point. This can be achieved changing smoothly the unit ball in Figure 3b to
a rotationally invariant one around the pole. Besides, a metric F on S2 is compatible with a metric on RP2

if Fx(u1) = F−x(u2), where u1 and u2 are the different lifts of some v ∈ T[x]RP2. Geometrically, assume
that one observes S2 from the point such that x and −x are the closest and furthest points of the equator,
respectively. As is illustrated in Figure 2, from this point of view, u1 and u2 are half turn rotations of one
another. A change in point of view so that −x is now in front and still with the pole above corresponds
to a horizontal flip of the view of T−xS2. In conclusion, the unit balls of antipodal points in the equator
must be vertically flipped when seen the same way as in Figure 3b. Thus, it is enough to change smoothly
the unit balls in the equator to vertically symmetric ones in order to have a compatible metric.

Note that both smoothing procedures can be done without changing the Lebesgue measure of the
unit balls and that the angular integration region is

(
0, π2

)
× (0, 2π), which has an area of π2. Then,

for this metric, one gets from (1) that areaBH(RP2,F ) = π
2(ε+L) · π

2, which can be made arbitrarily small
for L → ∞. When it comes to the systole, recall that a lift of a non-contractible loop γ must jump between
opposite points of the equator an odd number of times. Considering only a part of γ if necessary, one can
assume that γ joins opposite points of the equator without any other jump in between. Note that the unit
balls of Figure 3b are a non-symmetric version of the supremum norm ∥(u1, u2)∥ = max{|u1|, |u2|}. For this
non-symmetric version it can be computed that ∥(u1, u2)∥ = max

{
|u1|, u2ε ,−

u2
L

}
. See [5, Proposition 6.2]

for the details. If γ = (γ1, γ2) does not enter in the smoothen zone around the pole,

ℓF (γ) =

∫ 1

0
Fγ(t)(γ

′
1(t), γ

′
2(t)) dt ≥

∣∣∣∣∫ 1

0
γ′1(t) dt

∣∣∣∣ = |γ1(1)− γ1(0)| ≥ π.

Note that equality holds if γ′2(t) = 0 and γ1 increases or decreases monotonically between azimuthal
coordinates that differ exactly in π. If γ enters the smoothen zone around the pole, the first part of γ must
join the initial point with the zone. By what has been mentioned above, the length of vectors pointing
to the pole is proportional to 1

ε . Then, a small enough choice of ε would imply that ℓF (γ) > π also, and
therefore sys(RP2,F ) = π. In the end, areaBH(RP2,F ) = π

2(ε+L) sys
2(RP2,F ) < π

2L sys
2(RP2,F ) for any

value of L > 0. In particular, since L can be chosen arbitrarily large, there is systolic freedom for RP2 and
the Busemann–Hausdorff area. See [5, Section 6] for more details.

4. Optimal inequalities for non-reversible metrics

Álvarez Paiva, Balacheff and Tzanev proved in [1, Theorem IV] that areaHT(T2,F ) ≥ 3
2π sys2(T2,F ) for flat

metrics and that equality holds when the unit ball is the triangle with vertices (1, 0), (0, 1) and (−1,−1).
Finally, by the properties of the stable norm, one deduces that

areaHT(T2,F ) ≥ areaHT(T2, ∥·∥) ≥ 3

2π
sys2(T2, ∥·∥) = 3

2π
sys2(T2,F )

also for any Finsler metric.
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Finding the optimal isosystolic inequality for the more general Finsler case for areaHT and RP2 is
still an open problem. Existence of an optimal inequality can be proven by symmetrising the metric.
Indeed, considering the symmetric metric F̃x(u) = Fx(u) + Fx(−u), it can be proven in dimension 2 that
|B̃◦

x | ≤ 6|B◦
x | (see [7, Theorem 1]). If γ ⊆ RP2 is a systolic loop for F̃ , the inverted loop −γ is also non-

contractible, and then sys(RP2, F̃ ) = ℓF̃ (γ) = ℓF (γ) + ℓF (−γ) ≥ 2 sys(RP2,F ). Joining these inequalities
with the optimal inequality for reversible metrics,

areaHT(RP2,F ) ≥ 1

6
areaHT(RP2, F̃ ) ≥ 1

6
· 2
π
sys2(RP2, F̃ ) ≥ 2

3
· 2
π
sys2(RP2,F ).

Note that this implies that the constant 2
π can be improved, at most, by a factor of 2

3 for non-reversible

metrics. However, [7, Theorem 2] states that areaHT(RP2,F ) = 1
6 areaHT(RP2, F̃ ) if and only if almost all

unit balls are triangles. The fact that the optimal metric for the reversible case is a round one, far from
having symmetrised triangular unit balls, suggests that 4

3π is not optimal.

Conjecture 4.1. The optimal isosystolic inequality for Finsler metrics and Holmes–Thompson area is
areaHT(RP2,F ) ≥ 2

π sys2(RP2,F ).

The author has tried to attack the non-reversible case and Holmes–Thompson area with little success.
Consider the family of metrics used in the proof of systolic freedom in the previous section. For simplicity,
consider the metric before the smoothing, which can be done in an irrelevant arbitrarily small region.
Imposing that the systole is still attained along the equator amounts to imposing that 1

ε +
1
L ≥ 2. Indeed,

as before, if γ does not touch the pole, ℓF (γ) ≥ π. And if it touches it, it must go up and then back
down, having a length ℓF (γ) ≥ π

2

(
1
ε +

1
L

)
≥ π. The dual convex body of the unit balls of Figure 3b can be

computed to be the convex hull of the points (±1, 0),
(
0, 1ε
)
and

(
0,− 1

L

)
. This convex kite has Lebesgue

measure 1
ε +

1
L , and similarly to the Busemann–Hausdorff case, by (1),

areaHT(RP2,F ) =
1
ε +

1
L

π
· π2 =

1

π

(
1

ε
+

1

L

)
sys2(RP2,F ).

In conclusion, areaHT(RP2,F ) ≥ 2
π sys2(RP2,F ) if 1

ε +
1
L ≥ 2, which prevents the existence of shortcuts

through the pole. The smoothening process would just lead to results arbitrarily close to the above inequality,
agreeing with Conjecture 4.1.

Any unit ball can be drawn inside a rectangle and containing a triangle that touches three of the furthest
points from the origin. This might leave shortest lengths invariant and it might be interesting to perform
a similar test for triangle-shaped unit balls. For example, consider triangles with vertices (1, 0), (−δ, ε)
and (−δ,−L). In this case, the dual triangle has vertices

(
−1

δ , 0
)
,
(
1, 1+δ

ε

)
and

(
1,−1+δ

L

)
, and Lebesgue

measure (1+δ)2

2δ

(
1
ε +

1
L

)
. The norm is not so easy to compute but one could expect that imposing that the

systole is attained around the equator would imply the same (or worse) inequality. It would be a surprise if
there existed values for ε, L and δ that prove Conjecture 4.1 wrong. The author’s search of examples that
prove the conjecture wrong has been unfruitful and looking for ways to prove it might be more sensible.

A minor advance in this direction has been achieved in [5, Theorem 5.13], giving a slight generalisation
of Ivanov’s result for reversible metrics. It states that the inequality is also true for metrics such that the
distance between any two points of a systolic loop γ0 is attained through γ0. In other words, one needs to
have no shortcuts between points of γ0 that deviate from γ0. In this case, if γ0 connects x to y (and not

https://reportsascm.iec.cat28

https://reportsascm.iec.cat


Unai Lejarza Alonso

the other way around), the definition of systole ensures that there are no shortcuts from x to y . However,
in the non-reversible case, there might be shortcuts from y to x . Ivanov’s assumption is to have a reversible
metric, which implies that there are no such shortcuts. The assumption in [5, Theorem 5.13] is weaker but
still ensures that there are no such shortcuts. The proof is essentially the same that the one for Ivanov’s
theorem although Figure 3a gets slightly modified. For instance, the curve is no longer contained in the
square [0, s]2, and the short straight lines become unknown but bounded. The corresponding curve is shown
in [5, Figure 6], and the inequality (3) is modified to

areaHT(RP2,F ) = areaHT(D,φ) >
2

π
sys2(RP2,F )

(
n − 1

n
− 2 · n − 1

n2

)
.

Luckily, for arbitrarily large n the inequality becomes areaHT(RP2,F ) ≥ 2
π sys2(RP2,F ). A sufficient

condition to avoid shortcuts is that the systolic curve γ0 has the same forward and backward length. In
particular, this holds if Fγ0(t)(γ

′
0(t)) = Fγ0(t)(−γ′0(t)) for all t. In other words, reversibility of the metric

along a systolic curve is enough. Some ideas to attack the general case would be to try to modify the metric
around a systolic curve to a case under which the theorem holds. This might be easier than to modify the
metric at all points, although the attempts done by the author lead to inconclusive scenarios. For instance,
making the unit balls symmetric along a systolic curve by enlarging them, areaHT decreases but shortcuts
might appear. Instead, if the balls are symmetrised by stretching them, the systole must increase, but so
does the area. The only way the author has tried to define a kind of an overall averaged norm on S2 is
considering

F̃x(v) =

∫
SO(3)

Fσ(x)((Txσ)v) dµ(σ),

where µ is the unique left-invariant Haar measure on SO(3) such that µ(SO(3)) = 1. Intuitively, the unit
norm has been averaged over all directions around a point and over all points, so that F̃ corresponds to a
round metric on RP2. It can be proved that sys(RP2, F̃ ) ≥ sys(RP2,F ), because any curve joining antipodal
points under the action of σ ∈ SO(3) has the same property. However, areaHT(RP2,F ) ≥ areaHT(RP2, F̃ )
can be false in some cases. For instance, considering the unit balls in Figure 3b, the average norm for the
tangent vector (1, 0) in all directions should be

1

2π

∫ π

−π
Fx(cos t, sin t) dt =

1

π

∫ π/2

−π/2
max

{
|cos t|, sin t

ε
,−sin t

L

}
dt =

√
1 + ε2

πε
+

√
1 + L2

πL
.

Then, the unit sphere is given by all vectors lying on the Euclidean circle with radius r = π√
1+ε2

ε
+

√
1+L2

L

.

For the case of ε = L = 1, recall that |B◦
x | = 1

ε +
1
L = 2, and for the averaged metric,

|B̃◦
x | =

π

r2
=

1

π

(√
1 + ε2

ε
+

√
1 + L2

L

)2

=
(
√
2 +

√
2)2

π
=

8

π
> |B◦

x |.

This shows that the averaging procedure fails to have good properties even for the supremum norm. As
was suggested by F. Balacheff, another approach could be to consider a contact structure on the unitary
tangent bundle S∗RP2. With contact forms there is a theorem similar to the uniformisation theorem that
says that the initial contact form and a fixed round one are contactomorphic. One might be able to average
over the group of diffeomorphisms of S∗RP2 that leaves the round contact form invariant. This is similar
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to the fact that the action of SO(3) leaves a round metric on S2 invariant. It turns out that S∗RP2 is
isomorphic to the Lens space L(4, 1). However, the systole seems to be more difficult to deal with.

A final idea to believe that Conjecture 4.1 is true is the following. Consider an attempt of minimising
the Holmes–Thompson area only around a systolic loop with a fixed length. In order to decrease the
value of areaHT one must increase the Lebesgue measure of the unit balls. However, this process could
be intuitively done until the metric is symmetric along the systolic loop because otherwise the systole
might decrease. In conclusion, it seems sensible that the metric that minimises areaHT is symmetric along
a systolic loop, and the generalisation of Ivanov’s theorem would apply in this case.
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1. Introduction

An integer partition is said to be triangular if its Ferrers diagram can be separated from its complement
by a straight line. These objects first appeared in the contexts of combinatorial number theory [3] and
computer vision [4]. From a combinatorial perspective, they were first studied by Onn and Sturmfels [11],
who defined them in any dimension and called them corner cuts. Shortly after, Corteel et al. [5] obtained
the generating function for the number of 2-dimensional corner cuts. More recently, triangular partitions
have attracted interest in the field of algebraic combinatorics. Motivated by work of Blasiak et al. [2]
generalizing the shuffle theorem for paths under a line, Bergeron and Mazin [1] coined the term triangular
partitions and studied some of their combinatorial properties.

In this article we present new enumerative, geometric and algorithmic properties of triangular partitions
and their generalizations. In Section 2 we give basic definitions and some results from [1, 5]. In Section 3
we introduce a natural alternative characterization of triangular partitions, as those such that the convex
hull of the Ferrers diagram and that of its complement do not intersect. Moreover, we characterize which
points may be added to or removed from the Ferrers diagram while preserving triangularity.

In Section 4, we present two ways to encode triangular partitions in terms of balanced words, and use
one of them to implement an algorithm which, for a given N, computes the number of triangular partitions
of size n ≤ N in time O(N5/2). This allows us to obtain the first 105 terms of this sequence, while just
39 terms were known previously.

In Section 5, refining the approach from [5], we obtain generating functions for triangular partitions
with a given number of removable and addable cells. In Section 6, we present a recurrence for the number
of triangular partitions contained in a fixed triangular partition, as well as an explicit formula involving
Euler’s totient function for the case where the fixed partition is a staircase. A new combinatorial proof of
Lipatov’s enumeration theorem for balanced words [8] is obtained as a byproduct.

Section 7 studies pyramidal partitions, which are an extension of triangular partitions to higher di-
mensions. We prove that the characterization in terms of convex hulls generalizes nicely and that, for
dimension 3 or higher, the number of removable and addable cells can be arbitrarily large. We also describe
the residue modulo d of the number of d-dimensional pyramidal partitions of size n, for d prime.

In Section 8, convex and concave partitions are analyzed. These are partitions whose Ferrers diagram
can be separated from its complement by a convex or concave line. We present several characterizations
and we describe their removable and addable cells in terms of convex hulls. Finally, we prove that there
exist constants a, b, c such that the number of convex partitions of size n is greater than exp(a 3

√
n) and

smaller than exp(b 3
√
n log n), and the number of concave partitions of size n is greater than exp(c 3

√
n).

Due to space constraints, proofs are omitted from this article. A more thorough explanation of the
results is detailed by Elizalde and the present author in [7].

2. Background

A partition λ is a weakly decreasing sequence of positive integers, called the parts of λ. We will denote λ =
(λ1,λ2, ... ,λk), or λ = λ1λ2 ...λk when there is no possibility of confusion. We call |λ| = λ1+λ2+ · · ·+λk

the size of λ. If |λ| = n, we say that λ is a partition of n.
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Let N denote the set of positive integers. The Ferrers diagram of λ is the set of lattice points

{(a, b) ∈ N2 | 1 ≤ b ≤ k , 1 ≤ a ≤ λb}.

We will often identify a lattice point (a, b) with the unit square (called a cell) whose north-east corner
is (a, b). In particular, we say that a cell lies above, below or on a line when the north-east corner does.
The Ferrers diagram can then be interpreted as a set of cells. We will often identify λ with its Ferrers
diagram, and use notation such as c = (a, b) ∈ λ.

Let σk = (k , k−1, ... , 2, 1) denote the staircase partition of k parts. The conjugate λ′ of λ is obtained
by reflecting its Ferrers diagram about the y = x axis. The complement of λ is defined to be the set N2\λ,
where λ is identified with its Ferrers diagram.

Definition 2.1. A partition τ is triangular if its Ferrers diagram consists of the points in N2 that lie on or
below the line that passes through (0, s) and (r , 0) for some r , s ∈ R>0, called a cutting line.

See the left of Figure 1 for an example. We often use τ to denote a triangular partition.

s

r

Figure 1: Left: A cutting line for the triangular partition (8, 6, 5, 3, 1). Right: The first 105 terms of the
sequence |∆(n)|/(n log n).

Denote by ∆ the set of all triangular partitions and by ∆(n) the set of triangular partitions of size n.
Corteel et al. [5] obtain the generating function of |∆(n)| and bound the asymptotic growth of this number.

Theorem 2.2 ([5]). The generating function for triangular partitions can be expressed as

G∆(z) =
∑
n≥0

|∆(n)|zn =
1

1− z
+

∑
gcd(a,b)=1

∑
0≤j<a
0≤i<b

∑
1≤m<k

zN∆(a,b,k,m,i ,j),

where

N∆(a, b, k ,m, i , j) = (k − 1)

(
(a+ 1)(b + 1)

2
− 1

)
+

(
k − 1

2

)
ab + ij

+ i(k − 1)a+ j(k − 1)b + T (a, b, j) + T (b, a, i) +m,

(1)

and T (a, b, j) =
∑j

r=1(⌊rb/a⌋+ 1).
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Theorem 2.3 ([5]). There exist positive constants c and c ′ such that, for all n > 1,

cn log n < |∆(n)| < c ′n log n.

Let c = (i , j) be a cell of a triangular partition λ = λ1 ...λk . Define the arm length and the leg length
of c to be a(c) = λj − i and ℓ(c) = λ′

i − j , that is, the number of cells to the right of c in its row, and
above c in its column, respectively. Bergeron and Mazin [1] characterize triangular partitions and study
the number of cells that can be added or removed while preserving triangularity.

Lemma 2.4 ([1, Lemma 1.2]). A partition λ is triangular if and only if t−λ < t+λ , where

t−λ = max
c∈λ

ℓ(c)

a(c) + ℓ(c) + 1
, and t+λ = min

c∈λ

ℓ(c) + 1

a(c) + ℓ(c) + 1
.

Definition 2.5. A cell of τ ∈ ∆ is removable if removing it from τ yields a triangular partition. A cell of
the complement N2 \ τ is addable if adding it to τ yields a triangular partition.

Lemma 2.6 ([1, Lemma 4.5]). Every nonempty triangular partition has either one removable cell and two
addable cells, two removable cells and one addable cell, or two removable cells and two addable cells.

3. Characterization of triangular partitions

In this section, we introduce a new characterization of triangular partitions in terms of convex hulls. This
characterization is natural and arguably simpler than the one given in Lemma 2.4 by Bergeron and Mazin [1],
which involves the computation of an expression in terms of arm and leg lengths for each cell. We also
present a way to identify removable and addable cells. The convex hull of a set S ⊆ N2 will be denoted
by Conv(S).

Proposition 3.1. A partition λ is triangular if and only if Conv(λ) ∩ Conv(N2 \ λ) = ∅.

We will use the term vertex to refer to a 0-dimensional face of a polygon; in particular, not all lattice
points of Conv(τ) are vertices.

Proposition 3.2. Two cells in τ ∈ ∆ are removable if and only if they are consecutive vertices of Conv(τ)
and the line passing through them does not intersect Conv(N2 \ τ). Similarly, two cells in N\ τ are addable
if and only if they are consecutive vertices of Conv(N2 \ τ) and the line passing through them does not
intersect Conv(τ).

An immediate corollary is that a triangular partition cannot have more than two removable cells and
two addable cells, as we know from Lemma 2.6 by Bergeron and Mazin [1].

A similar characterization in terms of convex hulls for a single removable cell is proved by Elizalde and the
present author in [7], and is then used to describe an algorithm that determines whether a partition λ of n
into k parts is triangular. Said algorithm has complexity O(k) for the initialization and O(min{k ,

√
n})

for the rest of its steps, whereas an algorithm based on Bergeron and Mazin’s Lemma 2.4 would take
time O(n).
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4. Bijections to balanced words and efficient gener-
ation

In this section, we present two different interpretations of triangular partitions in terms of finite Sturmian
words, also known as balanced words. The first interpretation, which is hinted at in [1], is quite natural,
and it will allow us to prove an enumeration formula in Section 6. The second one relates each triangular
partition to a balanced word together with two positive integers, and it will be used in Section 4.4 to
implement an efficient algorithm to count triangular partitions by size.

4.1 Background on balanced words

A finite consecutive subword of a word is called a factor. An infinite binary word s is Sturmian if, for
every ℓ ≥ 1, the number of factors of s of length ℓ is exactly ℓ + 1. The applications of Sturmian words
range from combinatorics and number theory to dynamical systems; see [9] for a thorough study.

A finite binary word w = w1 ...wℓ is a factor of some Sturmian word if and only if it is balanced, that
is, for any positive integers h ≤ ℓ and i , j ≤ ℓ− h + 1, we have

|(wi + wi+1 + · · ·+ wi+k−1)− (wj + wj+1 + · · ·+ wj+k−1)| ≤ 1.

This condition states that for any two factors of w of the same length, the number of ones in these factors
differs by at most 1. Denote by B the set of all balanced words, and by Bℓ the set of those of length ℓ.

The following enumeration formula for balanced words was first proved by Lipatov [8]. Let φ denote
Euler’s totient function.

Theorem 4.1 ([8]). The number of balanced words of length ℓ is

|Bℓ| = 1 +
ℓ∑

i=1

(ℓ− i + 1)φ(i).

4.2 First Sturmian interpretation

Definition 4.2. A triangular partition is wide if all its parts are distinct. A partition is tall if its conjugate
is wide.

It can be shown that every triangular partition must be wide or tall, and it is both wide and tall if
and only if it is a staircase. The following proposition is a consequence of a well-known bijection between
balanced words and lattice paths with steps in {(1, 0), (1, 1)} (see [9]).

Given a wide triangular partition τ = τ1 ... τk , define the binary word

ω(τ) = 10τ1−τ2−110τ2−τ3−1 ... 10τk−1−τk−110τk−1. (2)

Since τ is wide, the exponents are nonnegative. For example, ω(86531) = 10110101.

Proposition 4.3. For every k, ℓ ≥ 1, the map ω is a bijection between the set of wide triangular partitions
with k parts and first part equal to ℓ, and the set of balanced words of length ℓ with k ones that start
with 1.
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4.3 Second Sturmian interpretation

To our knowledge, our second encoding of triangular partitions using balanced words is new. Let W be the
set of wide triangular partitions with at least two parts, and let B0 denote the set of balanced words that
contain at least one 0.

First we describe the set of differences of consecutive parts in a wide triangular partition. For τ =
τ1 ... τk ∈ W, define

D(τ) = {τ1 − τ2, τ2 − τ3, ... , τk−1 − τk}.

Lemma 4.4. For any τ = τ1 ... τk ∈ W, there exists d ∈ N such that τk ≤ d + 1 and either D(τ) = {d}
or D(τ) = {d , d + 1}.

Define min(τ) = τk , dif(τ) = minD(τ), and wrd(τ) = w1 ...wk−1, where, for i ∈ [k − 1], we let
wi = τi − τi+1 − dif(τ). Lemma 4.4 guarantees that wrd(τ) is a binary word.

Theorem 4.5. The map χ = (min, dif, wrd) is a bijection between W and the set

T = {(m, d ,w) ∈ N× N× B0 | m ≤ d + 1; w1 ∈ B0 if m = d + 1}.

Its inverse is given by the map

ξ(m, d ,w1 ...wk−1) = τ1 ... τk , where τi = m +
k−1∑
j=i

(wj + d) for i ∈ [k].

Additionally, given τ ∈ W with image χ(τ) = (m, d ,w), its number of parts equals the length of w plus
one, and its size is

|τ | = km +

(
k

2

)
d +

k−1∑
i=1

iwi . (3)

4.4 Efficient generation

Before this work, the entry of the OEIS [10, A352882] for the number triangular partitions of n only included
values for n ≤ 39. These are the terms listed in [5], where they are obtained from the generating function
in Theorem 2.2. This approach turns out to be impractical for large n.

Theorem 4.5 can be used to implement a much more efficient algorithm that can quickly compute
the first 105 terms of the sequence. Consider the tree where each vertex is a balanced word of length at
most ⌊

√
2N⌋, and the parent of a nonempty word is the word obtained by removing its last letter. On

input N, our algorithm runs a depth first search through this tree.

For each w ∈ Bℓ with ℓ ≤
√
2N, the algorithm finds all the values m, d ∈ N such that (m, d ,w) ∈ T ,

as defined in Theorem 4.5, and such that the size function given in equation (3) is at most N. Each
triplet (m, d ,w) corresponds to two partitions, the wide triangular partition τ = χ(m, d ,w) and its conju-
gate, except when w = 0k−1 (for some k ≥ 2) and m = d , in which case it accounts for only one partition,
the staircase σk .

A C++ implementation of this algorithm can be found at [6]. In a standard laptop computer, this
algorithm generates the first 103 terms of the sequence |∆(n)| in under one second, the first 104 terms in
under ten seconds, and the first 105 terms in under one hour.

https://reportsascm.iec.cat36

https://reportsascm.iec.cat


Alejandro B. Galván

Proposition 4.6. The above algorithm finds |∆(n)| for 1 ≤ n ≤ N in time O(N5/2). Additionally, it can
be modified to generate all (resp. all wide) triangular partitions of size at most N in time O(N3 logN)
(resp. O(N5/2 logN)).

The plot on the right of Figure 1 portrays the first 105 terms of the sequence |∆(n)|/(n log n). A
qualitative study suggests that, for large n, this sequence oscillates between two decreasing functions that
differ by about 0.05.

5. Generating functions for subsets of triangular
partitions

Let ∆1 and ∆2 denote the subsets of triangular partitions with one removable cell and with two removable
cells, respectively. Let ∆1 and ∆2 denote the subsets of triangular partitions with one addable cell and with
two addable cells, respectively. Let ∆2

2 = ∆2 ∩∆2. Denote partitions of size n in each subset by ∆1(n),
∆2(n), ∆

1(n), ∆2(n) and ∆2
2(n). In this section we obtain generating functions for each of these sets,

refining Theorem 2.2. In the following proposition, N∆(a, b, k ,m, i , j) is the function defined in equation (1).

Proposition 5.1. The generating function for triangular partitions with two removable cells can be ex-
pressed as

G∆2(z) =
∑
n≥0

|∆2(n)|zn =
∑

gcd(a,b)=1

∑
0≤j<a
0≤i<b

∑
k≥2

zN∆(a,b,k,k,i ,j).

Proposition 5.2. The generating functions for partitions in ∆1, ∆2, ∆1, ∆2
2 can be written in terms

of G∆(z) (given in Theorem 2.2) and G∆2(z) (given in Proposition 5.1) as follows:

G∆1(z) = G∆(z)− G∆2(z)− 1, G∆2(z) =
1− z

z
G∆(z) +

1

z
G∆2(z)−

1

z
,

G∆1(z) =
2z − 1

z
G∆(z)−

1

z
G∆2(z) +

1

z
, G∆2

2
(z) =

1− 2z

z
G∆(z) +

1 + z

z
G∆2(z)−

1

z
.

We have used Proposition 5.1 in order to implement an algorithm to find |∆2(n)|, available at [6]. The
initial terms of the sequences |∆1(n)| and |∆2(n)| suggest that |∆2(n)| > |∆1(n)| for all n ≥ 9, although
we do not have a proof of this. It is interesting to note that, at least for n ≤ 150, both the local maxima
of |∆1(n)| and the local minima of |∆2(n)| occur precisely when n ≡ 2 (mod 3). On the other hand,
|∆(n)| does not show such periodic extrema.

6.Triangular subpartitions and a combinatorial proof
of Lipatov’s formula for balanced words

Let I (τ) = |{ζ ∈ ∆ : ζ ⊆ τ}| denote the number of triangular subpartitions of τ ∈ ∆. We start by giving
a recurrence for this number. In the case where τ is a staircase, we obtain an explicit formula too, deriving
a new proof of Theorem 4.1 in the process.
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Let c− and c+ be the leftmost and rightmost removable cells of τ . Following the notation in [1], let
τ◦ be the triangular partition obtained from τ by removing all the cells in the segment between c− and c+

(or, if c− = c+, just removing that cell).

Lemma 6.1. For any τ ∈ ∆(n) with n ≥ 1,

I (τ) = I (τ \ {c−}) + I (τ \ {c+})− I (τ◦) + 1.

This recurrence relation comes from an inclusion-exclusion argument. Along with the base case I (ϵ) = 1
(where ϵ denotes the empty partition), it allows us to compute I (τ) for any τ ∈ ∆, although not very
efficiently. We will now present a more convenient formula for the case in which τ is a staircase.

We use the terms height and width of a partition τ to refer to the number of parts and the largest part
of τ , respectively. Let ∆ℓ×ℓ be the set of triangular partitions whose width and height are at most ℓ. It can be
proved that a partition belongs to ∆ℓ×ℓ if and only if it is a triangular subpartition of σℓ. Our next goal is to
give a formula for I (σℓ)= |∆ℓ×ℓ|. The proof of the following lemma uses the bijection ω from equation (2).

Lemma 6.2. For ℓ ≥ 1, the number of triangular partitions of width exactly ℓ and height at most ℓ
is |Bℓ|/2, and

|∆ℓ×ℓ \∆(ℓ−1)×(ℓ−1)| = I (σℓ)− I (σℓ−1) = |Bℓ| − 1.

Combining the above lemma with Lipatov’s Theorem 4.1 enumerating balanced words, we deduce the
following result.

Theorem 6.3. For any ℓ ≥ 0,

|∆ℓ×ℓ| = I (σℓ) = 1 +
ℓ∑

i=1

(
ℓ− i + 2

2

)
φ(i).

Unfortunately, the proof of Theorem 6.3 using Lemma 6.2 and Lipatov’s formula does not give a
conceptual understanding of why the terms

(
ℓ−i+2

2

)
and φ(i) appear.

Instead, we have been able to find a direct combinatorial proof of Theorem 6.3 that explains the
role of these terms. Since the whole proof does not fit in this article, we will briefly outline its main
ideas. First, we establish a bijection ϕ between triangular partitions that contain the cell (2, 1) and the
set {(a, b, d , e) ∈ N4 | d < a, gcd(d , e) = 1}, and characterize the image of ∆ℓ×ℓ by ϕ. Then, for a fixed
pair of coprime numbers d < e, we take the union of the points (a, b) for which (a, b, d , e) ∈ ϕ(∆ℓ×ℓ)
and an affine transformation of the points (a, b) for which (a, b, e, e − d) ∈ ϕ(∆ℓ×ℓ). The resulting set
is formed by the lattice points inside a certain triangle, which are counted by

(
ℓ−e+2

2

)
. Summing over all

coprime pairs d < e and taking into account some technical details, we obtain the formula in Theorem 6.3.

As an added benefit, our argument also provides a new proof of Lipatov’s formula (Theorem 4.1).

7. Pyramidal partitions

In this section, we will study a higher-dimensional analogue of triangular partitions. These objects are first
defined in [11], and some bounds on their growth are given in [13].

Definition 7.1. A d-dimensional pyramidal partition is a finite set of points in Nd that can be separated
from its complement by a hyperplane.
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Notice that a 2-dimensional pyramidal partition is the Ferrers diagram of a triangular partition. Propo-
sition 3.1 can be extended to this more general setting; however, Lemma 2.6 does not hold anymore.

Theorem 7.2. Let d ∈ N. A finite nonempty subset π ⊂ Nd is a d-dimensional pyramidal partition if and
only if Conv(π) ∩ Conv(Nd \ π) = ∅.

Proposition 7.3. For any d ≥ 3, there are d-dimensional pyramidal partitions with an arbitrarily large
number of removable and addable cells.

In the case of triangular partitions in N2, we have that the only partitions τ ∈ ∆ such that τ = τ ′

(that is, they are symmetrical with respect to the line x = y) are the staircase partitions. From this fact,
we can deduce that |∆(n)| ≡ 1 (mod 2) when n =

(m
2

)
for some integer m ≥ 2, and |∆(n)| ≡ 0 (mod 2)

otherwise. This approach can be extended to d-dimensional pyramidal partitions by studying an action of
the symmetric group on them. We will denote by ∆dD(n) the set of d-dimensional pyramidal partitions of
size n, to avoid confusion with ∆1(n) and ∆2(n) defined in Section 5.

Theorem 7.4. Let n, d ∈ N, with d a prime number. If there exists an integer m ≥ d such that n =
(m
d

)
,

then |∆dD(n)| ≡ 1 (mod d). Otherwise, |∆dD(n)| ≡ 0 (mod d).

8. Convex and concave partitions

Convex partitions are defined by Dean Hickerson in [10, A074658], where the number of convex partitions
of size n is counted for n ≤ 55. The concept of concave partitions is essential to some Schur positivity
conjectures (see [2, Conjecture 7.1.1]). In this section, we will extend our research on triangular partitions
to these more general families, starting with some characterizations.

Definition 8.1. A partition λ is said to be convex (resp. concave) if its Ferrers diagram consists of the
points in N2 that lie on or below some convex (resp. concave) curve.

Proposition 8.2. Given a partition λ, the following are equivalent:

1. λ is convex (resp. concave).

2. λ can be obtained as the intersection (resp. union) of a finite number of triangular partitions.

3. Conv(λ) ∩ (N2 \ λ) = ∅ (resp. λ ∩ Conv(N2 \ λ) = ∅).
4. There exists a convex (resp. concave) region R ⊂ R2

≥0 such that λ = R ∩ N2.

Using these new concepts, we can give a new characterization for triangular partitions.

Corollary 8.3. A partition is triangular if and only if it is convex and concave.

However, this characterization does not generalize to higher dimensions (see [12]).

Removable and addable cells in the convex and concave settings are defined in an analogous way to
Definition 2.5.

Proposition 8.4. A cell c = (a, b) is removable from a convex partition η if and only if it is a vertex
of Conv(η) and (a+1, b), (a, b+1) /∈ η. Similarly, a cell c ′ is addable to a concave partition ν if and only
if it is a vertex of Conv(N2 \ ν).
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To close the article, we will study the asymptotic growth of the number of convex or concave partitions.
We will use

⋂
(n) (resp.

⋃
(n)) for the set of convex (resp. concave) partitions of size n.

Theorem 8.5. There exists a constant b and a function δ(n) ∼ 32/3

2 n2/3 such that

2
3√n
√

2 3
√
n − 2

4 3
√
n + 4

≤
∣∣∣⋂(n)

∣∣∣ ≤ exp(b 3
√
n log n),

2
3
√

4(n−δ(n))√
2 + 2 3

√
4(n − δ(n))

≤
∣∣∣⋃(n)

∣∣∣ .
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topològics finits. Tot i que són dues aproximacions diferents, tenen un punt de

contacte: els posets. Per una banda, classificarem els espais topològics finits a
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Algebraic topology of finite topological spaces

1. Introduction

A finite topological space is a topological space that has a finite number of points. At first, one might
think that these topological spaces are not very interesting, cannot generate many topologies, and that the
homotopy groups vanish immediately. However, they have more structure since every topological space can
be associated with a partial order. Partially ordered sets, posets for short, are potent combinatorial objects
for encoding information about spaces. These, in turn, are related to simplicial complexes.

Michael McCord and Robert Stong were two American mathematicians from the second half of the
20th century who studied finite topological spaces almost simultaneously in 1966, but from two different
perspectives. In this work, we study finite topological spaces following these two classical approaches, to see
how they relate to each other through posets. Stong’s Classification Theorem [6] is based on the internal
structure of the spaces, the order structure. On the other hand, McCord’s Theorem [4] compares finite
spaces with simplicial complexes through homotopy theory, from a more external point of view. Since this
document is intended for general audiences, it does not include proofs. However, if the reader is curious,
they can consult the references for details.

2. Preliminaries

In this section, we will see that finite topological spaces and finite posets are essentially the same. We will
look at basic definitions for working with finite topological spaces and review some properties.

Definition 2.1. A finite topological space (X , τ) is a topological space over a finite set of points.

One might think that in a finite set there is a finite number of topologies and that this fact would suffice
for classification. However, the notion of homeomorphism is too restrictive, and we aim to understand these
spaces using their topological properties concerning homotopy properties. To grasp some concepts, it is
recommended to have a basic understanding of homotopy theory.

2.1 Properties

The Alexandroff topology [1] is characterized by the property that the intersection of any family of open
sets is open. Finite topological spaces exemplify this topology, since the arbitrary intersection of open sets
cannot be infinite. Consequently, we can talk about the smallest open set containing a point, in the sense
of an open closure.

Definition 2.2. Given a point x in a finite topological space (X , τ), we define the minimal open set of x
as the intersection of all open sets containing x :

Ux =
⋂

x∈O∈τ
O.

The minimal open sets form a basis for the topology of X , called the minimal basis of X .

Definition 2.3. A preorder is a reflexive and transitive relation. A preordered set or preset is a set with
a preorder. A partial order is a reflexive, transitive and antisymmetric relation. A partially ordered set or
poset is a set with a partial order.
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Proposition 2.4. Let X be a finite topological space. The binary relation ≤ on X defined by the following
expression is a preorder:

x ≤ y if and only if x ∈ Uy .

We have just seen that finite spaces induce a preorder, given by the minimal basis. Now we will see
that, in fact, a preorder also induces a topology on a finite set.

Definition 2.5. Given P a preset and x ∈ P, we write P≤x := {z ∈ P | z ≤ x}. Similarly, P≥, P<, and P>

are defined.

In the case of a finite topological space X with associated preorder ≤, Ux corresponds to P≤x .

Definition 2.6. Let P be a finite preset. The Alexandroff topology is the topology defined by the basis

{P≤x ⊆ P | x ∈ P}.

In fact, these two are equivalent.

Proposition 2.7 ([7, Proposition 2.1.7]). Let (X ,≤) be a preset and τ the Alexandroff topology. Let ≤′

be the preorder on X given by the minimal open sets of (X , τ). Then, the two presets (X ,≤) and (X ,≤′)
coincide.

Proposition 2.8 ([2, Proposition 1.2.1]). A function f : X → Y between finite spaces is continuous if and
only if it is order-preserving.

Definition 2.9. A topological space X satisfies the separation axiom T0 if, given two distinct points, there
is an open set containing one of them but not the other.

Proposition 2.10 ([7, Proposition 2.1.9]). A finite topological space X is T0 if and only if its associated
preordered set is antisymmetric; therefore, it is a poset.

We have seen that the correspondence between finite topological spaces and preorders is bijective, and,
in fact, if the topological space is T0, we have antisymmetry and hence a partially ordered set. One of the
main consequences of this correspondence is the visual representation that arises: Hasse diagrams.

Definition 2.11. The Hasse diagram of a poset X is a directed graph whose vertices are the points of X and
whose edges are the ordered pairs (x , y) such that x < y and there exists no z ∈ X such that x < z < y .
Additionally, the elements are arranged in descending order, with bigger elements in the upper part of the
diagram, while smaller ones are placed below.

Given any finite topological space, we can construct a T0 space that is homotopy equivalent to the
given one, by identifying points with the same closure (see [2, Proposition 1.3.1]). We will now study finite
topological spaces equivalent under homotopies, therefore, without loss of generality, we can reduce the
study to spaces that are T0 and, hence, posets.

At this point, we discuss how to convert a finite topological space into the Hasse diagram of a poset.

Example 2.12. Let X = {a, b, c , d} with the following open sets: ∅, {a, b, c, d}, {c}, {d}, {b, d}, {c , d}
and {b, c , d}, represented by the interiors of the closed curves of Figure 1(a).
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Since X is T0, it is a poset, thus we can talk about the associated Hasse diagram of X . Let’s see how
it is constructed. We start with the points corresponding to open sets and place them at the bottommost
positions. We can compute the open sets Ux for each x ∈ X : Ua = {a, b, c , d}, Ub = {a, b, c , d}∩{b, d}∩
{b, c , d} = {b, d}, Uc = {a, b, c , d} ∩ {c} ∩ {c , d} ∩ {b, c , d} = {c} and analogously Ud = {d}. With
this, we establish the order relation: c < a, but c is not comparable with b or d ; d < a and d < b, but
since b < a, we have the chain d < b < a.

b

d

c

a

(a)

a

b c

d

(b)

Figure 1: (a) Open sets of X . (b) Hasse diagram of X .

Now let’s see how to obtain a topological space given a the Hasse diagram of a poset.

Example 2.13. Let Y be the poset given by the Hasse diagram seen in Figure 2(a), we want to compute
its open sets. Following Definition 2.6, we move through the Hasse diagram starting from the bottom and
moving upwards. The sets {c} and {d} are open.

Now, consider an open set U such that a ∈ U. Since c and d are smaller than a, they must also be
in U. Thus, we have the open set Ua = {a, c , d}. By following a similar process starting from b, we obtain
the open set {b, c , d}. What we have done can be described as “placing our finger” on the point a and
descending through all possible edges until reaching the bottom. It is important not to miss any edges, for
example, {b, d} is not an open set. Therefore, the open sets of X are: {c}, {d}, {a, c , d}, {b, c , d}, and
the unions {c , d}, {a, b, c , d}; see Figure 2(b).

a b

c d

(a)

b

d

c

a

(b)

Figure 2: (a) Hasse diagram of space Y . (b) Open sets of Y .

2.2 Bijective correspondence

Finite spaces induce a preorder, and a preorder induces a topology. That is to say, there is a bijective
correspondence between finite topological spaces and preorders. Thus, we can talk about the topology
of a preorder or the order in a topological space. Table 1 shows a summary of how some properties
transfer between finite topological spaces and finite preorders. Some are not explained here, but for further
information and details, see the complete final thesis [7].
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Finite Topological Space XXX Finite Preorder PPP

Ux P≤x

y ∈ Ux y ≤ x

T0 Antisymmetric preorder: poset

Diagram of open sets Hasse diagram

Open set Down-set

f continuous f order-preserving

Path, path connected Fence, order-connected

Homotopy: f ≃ g Fence of maps: f = f0 ≤ f1 ≥ f2 ≤ · · · fn = g

Table 1: Correspondence between finite topological spaces and finite preorders (posets).

3. Stong’s Classification Theorem

This section explores how Stong uses homotopy theory to classify finite topological spaces.

3.1 Minimal spaces: the core

We begin by identifying the smallest space that preserves the homotopy properties of a given finite topo-
logical space.

Definition 3.1. Let x , y ∈ X be two points in a finite topological space. We say that x covers y if x > y
and for all z ∈ X such that x > z ≥ y , we have z = y . It can also be said that y is covered by x .

Definition 3.2. Let X be a finite T0 topological space. A point x ∈ X is called a down beat point if it
covers one and only one element of X . Dually, x is an up beat point if it is covered by exactly one element.
Points that satisfy either of these properties are referred to as beat points of X .

Remark 3.3. In the Hasse diagram, x is a down beat point if it has exactly one lower edge. In the topological
space, this is equivalent to saying that the set Ûx = Ux \ {x} has a maximum. Similarly, x is an up beat
point if it has exactly one upper edge in the Hasse diagram.

We can see in Example 2.12 that b, d and c are up beat points, b is also a down beat point and a is
neither of them. There are no beat points in Example 2.13.

Definition 3.4. A finite T0 topological space X is minimal if it has no beat points. The core of a finite
topological space X is a subspace that is also minimal as a topological space.

Given a finite topological space X , its core can be constructed by removing beat points one at a
time. This process preserves the homotopy properties of X because the resulting subspace is a strong
deformation retract (see [2, Proposition 1.3.4]).Observe that this minimal subspace always exists. If X has
no beat points, it is already minimal, making X its own core, as illustrated by the space in Example 2.13. If
beat points are present, they can be removed successively until a minimal space is obtained. For instance,
in Example 2.12, we can retract d to b, then b to a, and lastly c to a; therefore, {a} is the core of X . As
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you may have deduced, the space X is homotopic to a point; therefore, X is indeed contractible, which
can be easily observed in the Hasse diagram, rather than in the description of X by its open sets.

Note that minimal is in the sense of not having beat points, not of having a few points. This will be
the smallest subspace of a finite topological space that keeps the original homotopy properties. The space
of Example 2.12 is not minimal, whereas the one in Example 2.13 is minimal.

Example 3.5. Let X be the finite topological space associated with the Hasse diagram shown in Figure 3(a).
We compute its core by removing the beat points. First, since b is an up beat point, we retract it towards a.
Then, we retract c towards a because it is an up beat point of X \ {b}. Finally, we retract e towards a
because it is an up beat point of X \ {b, c}. The resulting subspace X \ {b, c , e} is minimal and therefore
is the core of X . Note that changing the order of this process leads to the same result, bearing in mind
that we can only retract one beat point at a time.

a

b c d

e f g

(a)

a

c d

e f g

(b)

a

d

e f g

(c)

a d

f g

(d)

Figure 3: (a) Space X not minimal. (b) X \ {b}. (c) X \ {b, c}. (d) X \ {b, c , e}, the core of X .

3.2 The Theorem

In his work, Stong [6] introduces a matricial approach to classify finite spaces. However, in this paper we will
not adopt Stong’s method. Instead, the Classification Theorem can be proven using more straightforward
propositions, as discussed in [7, Corollary 2.3.10] or [2, Corollary 1.3.7].

Theorem 3.6 (Classification Theorem (Stong)). A homotopy equivalence between minimal finite topolog-
ical spaces is a homeomorphism. In particular, the core of a finite space is unique up to homeomorphism,
and two finite topological spaces are homotopy equivalent if and only if they have homeomorphic cores.

The crucial point is that with minimality, we can compare spaces by homeomorphism instead of homo-
topy. Essentially, finite topological spaces are determined up to homeomorphism by their core, there is a
bijection between posets.

Example 3.7. Consider the following finite T0 topological spaces X and Y given by Figure 4(a) and (c).
They are very similar, but are they homotopic? We already computed the core of X in Example 3.5. For Y ,
we just retract a, that is a down beat point, towards b and we have the cores shown in Figure 4(c) and (d).

a

b c d

e f g

(a)

a d

f g

(b)

a

b c d

e f g

(c)

b c d

e f g

(d)

Figure 4: (a) Space X . (b) The core of X . (c) Space Y . (d) The core of Y .
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The cores of X and Y are not homeomorphic. Therefore, by Stong’s Theorem 3.6, X and Y are not
homotopy equivalent. But these two spaces are not visually much different, is there any other way to
compare them? The next section is dedicated to relaxing the equivalence criteria to see that they aren’t
that different.

4. McCord’s Theorem

McCord studies finite topological spaces by associating them with abstract combinatorial objects, known
as simplicial complexes. These complexes can be assigned with a topological representation, called the ge-
ometric realization, which enables their visualization as geometric structures in Euclidean space, connected
coherently, forming geometric shapes such as triangles and tetrahedra. If the reader is unfamiliar with these
concepts, they can refer to any introduction to simplicial complexes, such as [5], [2, Appendix] or [7].

4.1 Simplicial complexes

Definition 4.1. A simplicial complex K consists of a set VK, called the set of vertices, and a set SK of
finite nonempty subsets of VK, which is called the set of simplices, satisfying that any subset of VK of
cardinality one is a simplex and any nonempty subset of a simplex is a simplex.

Definition 4.2. The geometric realization |K| of a simplicial complex K is the set of formal convex
combinations

∑
v∈K αvv such that {v |αv > 0} is a simplex of K.

Definition 4.3. Let X be a T0 finite topological space. The simplicial complex associated to X , or order
complex, denoted by K(X ), is the simplicial complex whose n-simplices are chains of length n:

x0 < x1 < · · · < xn,

where the order relation is given by Proposition 2.4.

Example 4.4. Let X be the finite T0 topological represented in Figure 5(a). Let’s see how to construct the
associated simplicial complex K(X ). First, the elements of X are the vertices or 0-simplices. Next, we look
at the longest chains. Here we have {d < b < a} and {e < b < a}. Therefore, we have two 2-simplices.
Note that they share an edge, {b < a}.

Next, we go down in dimension. In this case, we need to add an edge from c to d and another from c
to e, because the other chains of size 1 are already represented as edges (1-simplices) of the 2-simplices.
Finally, we graphically represent the geometric realization of K(X ) in Figure 5(b).

a

b c

d e

(a)

a

b

c

d

e

(b)

Figure 5: (a) Space X . (b) Order complex K(X ).
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The inverse process can be done by constructing the face poset of K, obtaining a topological space.
The face poset is obtained by taking the simplices of a given simplicial complex K as elements and defining
the order relation by inclusion. Note that this would not result in the original space but in a homotopic one.

4.2 The McCord map

Definition 4.5. Given K and L two simplicial complexes, a simplicial map φ : K → L is a vertex
map φ′ : VK → VL that sends simplices into simplices.

Note that when defining a map between simplicial complexes, it suffices to specify the map on the
vertices, provided that the vertex mapping respects the combinatorial structure of the image complex. This
follows from the fact that each simplex in a complex is uniquely determined by its vertices; therefore, once
the map is defined on the vertices, it extends naturally and consistently to all simplices.

Definition 4.6. Let X and Y be finite T0 topological spaces, and f : X → Y a continuous map. Then,
the associated simplicial map K(f ) : K(X ) → K(Y ) is defined by K(f )(x) = f (x).

McCord [4, Theorem 6] proved that given a continuous map that is locally a weak homotopy equivalence
over a basis-like open cover, then it is globally so. We will use this theorem, the previous definition and the
minimal basis to show that the two spaces we have seen before are weak homotopy equivalents.

Example 4.7. As previously discussed in Example 3.5, no homotopy equivalence exists between X and Y
because their cores are not homeomorphic. But using the following map, we can prove that there is a weak
homotopy equivalence between X and Y . Consider X ′ and Y ′ the cores of X and Y , respectively. The
map f : Y ′ → X ′ is given by f (a1) = f (a2) = f (a3) = a, f (b) = b, f (c) = c , f (d) = d ; see Figure 6.

Y ′
a1 a2 b

a3 c d

f
X ′a b

c d

Figure 6: Map f .

It is shown that f is order-preserving, and therefore continuous. Then, by the fact that preimages of
minimal open sets are contractible [7, Corollary 2.2.12] and [4, Theorem 6], we obtain that f is a weak
homotopy equivalence.

Every homotopy equivalence induces an isomorphism on the homotopy groups, but two spaces with
isomorphic homotopy groups may not be homotopy equivalent. This correspondence is called a weak
homotopy equivalence. This means that spaces X and Y have isomorphic homotopy groups, and with this
relaxed criteria, we can finally say that they are equivalent. In fact, they both are finite models of the
sphere S1.

Observe that, given a finite T0 topological space X and its geometric realization |K(X )|, any point α ∈
|K(X )| can be expressed, by construction, in terms of coordinates over a chain x1 < x2 < · · · < xn in X in
the form α =

∑n
i=1 λixi , where λi > 0 for all 1 ≤ i ≤ n and

∑n
i=1 λi = 1. The support of α is precisely

this chain: supp(α) = {x1, x2, ... , xn}.
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Definition 4.8. Let X be a finite T0 topological space and α ∈ |K(X )| a point in the geometric realization
of the simplicial complex associated with X such that supp(α) = {x1, x2, ... , xn} ⊆ X . The McCord map
is the map µX : |K(X )| → X defined by

µX (α) = min(supp(α)) = x1.

Example 4.9. We start from Example 4.4, where we computed the simplicial complex associated with
a topological space X . A point α ∈ |K(X )| in the interior of the triangle abe can be written as α =
λ1e + λ2b + λ3a with

∑3
i=1 λi = 1. Then, µX (α) = min({e, b, a}) = e, and therefore every point in the

interior of this triangle will map to e, represented in green in Figure 7. Similarly, points in the interior
of adb will map to d , represented in red.

Now consider a point on the interior of the edge ae. Since the support is {e, a}, the minimum is e.
More generally, the smallest vertex, concerning the poset order, of all the ones contained in the simplex,
will “absorb” the points in the interior of the simplex. Figure 7 shows the McCord map, where colours
represent the preimages of the vertices.

|K(X )| a

b

c

d

e

µX

Xa

b c

d e

Figure 7: McCord map coloured.

From here, the objective is to conclude this section by establishing that for any given polyhedron,
there exists a corresponding finite topological space, and conversely, for any finite topological space, there
exists a polyhedron that models it. First, we prove that this correspondence is a weak homotopy, followed
by its application in proving McCord’s Theorem. The proofs provided by Barmak [2, Theorem 1.4.6]
and McCord [4, Theorem 1] are somewhat intricate or may lack comprehensive details. For a clearer
comprehension of this demonstration, you can refer to [7, Theorem 3.1.8].

Theorem 4.10 (McCord [4, Theorem 1]).

1. For every finite topological space X , there exists a finite simplicial complex K and a weak homotopy
equivalence f : |K| → X.

2. For every finite simplicial complex K, there exists a finite topological space X and a weak homotopy
equivalence f : |K| → X.

This theorem states that every finite topological space has an associated simplicial complex that pre-
serves properties up to weak homotopy equivalence and vice versa, that every simplicial complex has a
finite topological space that is weakly homotopy equivalent. Both finite topological spaces and simplicial
complexes have a strong combinatorial structure, which is convenient to work with. This is useful because
it allows us to study non-finite topological spaces algorithmically through finite ones, by using triangulations
of spaces such as the sphere.

Recall that a triangulation is a homeomorphism between a topological space and a simplicial complex.
For example, a triangle is homeomorphic to S1, or a hollow tetrahedron is homeomorphic to S2, and these
are simplicial complexes.
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4.3 Finite models of non-finite spaces

We conclude this work by giving some examples of use to model the compact connected surfaces. Due to
space constraints, we will not see the 2-torus in this paper; however, it can be found in [7, pp. 32–34].
Beginning with the sphere S2, consider the following triangulation h given by a hollow tetrahedron; see
Figure 8.

0

1

2

3

|K|

h :

X

Figure 8: Triangulation of a sphere. Sphere is extracted from [3].

Each vertex is labelled with a number, and each simplex is labelled with the numbers of its vertices.
We then construct the face poset of K and obtain the Hasse diagram of the associated poset; see Figure 9.
Note that this gives us a minimal finite topological space that models the non-finite space S2.

012 023 013 123

01 02 03 12 23 31

0 0 2 3

Figure 9: Finite model of S2.

Also, note that a triangulation with additional vertices would result in a larger finite topological space,
although it would also be minimal. This highlights the fact that minimal refers to not having beat points,
not to having a few points. Despite being weakly homotopy equivalent, these spaces wouldn’t be homotopy
equivalent, since they wouldn’t be homeomorphic. This underlines why we need to relax the equivalence
criteria because we know that they both model the same surface, therefore they must be equivalent in
some context.

The next example is the projective plane RP2. Consider the triangulation illustrated in Figure 10. The
Hasse diagram of its associated face poset can be seen in Figure 11.

0

1 3 2

4 5

2 0 1

Figure 10: Triangulation of RP2.
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013 023 015 024 134 045 124 345 235 125

01 03 13 02 23 05 15 04 24 14 34 45 12 35 25

0 2 1 3 4 5

Figure 11: Finite model of RP2.

The Classification Theorem for compact connected surfaces states that every compact connected surface
can be described in terms of spheres, tori, projective planes, and connected sums of these. As a final point,
we will provide an overview of how to compute the connected sum, allowing us to model all compact
connected surfaces by using the previously provided models and incorporating this procedure.

Consider two spheres S2 triangulated as in Figure 8. The connected sum consists of identifying vertices
and corresponing edges, and eliminating the faces comprised within these vertices; see Figure 12. We
proceed as follows: identify vertex 0 of the first sphere with vertex 0 of the second (denoted as 0′), vertex 2
of the first with vertex 1 of the second (denoted as 4), and vertex 3 of the first with vertex 2 of the
second (denoted as 2′), while keeping vertices 1 of the first and 3 of the second unchanged, identify the
corresponding edges, and finally remove the interior triangle formed by 0′, 2′ and 4.

3 2

1

2
1

3

0 0 0′

1 3

2′

4

Figure 12: Diagram of the connected sum of two spheres S2.

Given two associated posets of the spheres, as in Figure 9, we construct the associated poset of the
connected sum by following the mentioned procedure: identifying corresponding vertices and omitting the
identified triangle; see Figure 13. This approach avoids the need to calculate the poset for the resulting
connected sum of spheres.

0′12′ 0′14 12′4 0′2′3 0′34 2′34

12′ 0′1 0′4 14 0′2′ 2′4 0′3 2′3 34

1 0′ 2′ 4 3

Figure 13: Finite model of a connected sum of two spheres S2.
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1. Introduction

A central challenge driving the development of algebraic geometry is the classification of algebraic varieties,
which includes the classification of the singularities of these varieties. One approach at tackling this problem
is to characterize singularities by attaching algebraic invariants.

A rich family of such invariants falls under the umbrella of the so-called Bernstein–Sato theory, whose
roots lie in the foundational works of Bernstein [2] and Sato [23]. We briefly outline their discovery. Denote
by DR|C the ring of C-linear differential operators on the polynomial ring R = C[x1, ... , xn] and let f be a
nonzero polynomial. Then there exist a nonzero differential operator δ(s) ∈ DR|C[s], and a non-constant
monic polynomial bf (s) ∈ C[s] satisfying the functional equation

δ(s) · f s+1 = bf (s) f
s , for s ∈ Z≥0.

The polynomial bf (s) is the Bernstein–Sato polynomial of f .

The Bernstein–Sato polynomial has been the focus of extensive research since it encodes the behavior
of the singularities of the hypersurface defined by f in Cn. To showcase this, suppose f vanishes at 0 ∈ Cn.
A well-known invariant from complex analysis is the log-canonical threshold of f at the origin, defined as

lct(f ) = sup

{
λ ∈ R>0

∣∣∣∣ ∫
U

1

|f |2λ
< ∞ for some neighborhood U of the origin

}
.

The log-canonical threshold is a rational number in the interval (0, 1]. The more singular f is, the smaller
the log-canonical threshold will be. Kollár proved that the log-canonical threshold of f is the smallest
root of bf (−s) [13]. It is known that the roots of bf (s) are rational and negative due to Malgrange and
Kashiwara [16, 12]. A number of invariants have originated around the Bernstein–Sato polynomial over the
years. Of special interest in birational geometry are multiplier ideals and jumping numbers (for instance,
see [15]).

In positive characteristic, Bernstein–Sato theory has a more recent development. Let us make an
overview of one of the main objects of study, namely, the test ideals. These were introduced by Hochster
and Huneke as an auxiliary tool in the context of tight closure theory [11], and afterwards related to the
multiplier ideals by Hara and Yoshida [8]. Blickle, Mustaţă and Smith gave an alternative but equivalent
definition of test ideals in [6], on which we base our study.

To fix ideas, let R be a regular ring of characteristic p > 0 and f a nonzero element. The test ideals
(cf. Definition 2.10) are a family {τ(f λ)}λ∈R≥0

of ideals of R indexed by the real numbers. For λ ≤ µ,

these satisfy τ(f λ) ⊇ τ(f µ), hence one obtains a descending chain of ideals in R. One can show that for a
fixed λ > 0, there exists ε > 0 such that τ(f λ) = τ(f µ) for all µ ∈ [λ,λ+ ε), i.e. the family is right semi-
continuous. On the contrary, there exist certain λ > 0 such that τ(Iλ−ε) ⊋ τ(Iλ) for any ε > 0, that is,
the chain of test ideals “jumps”. These jumping spots are named F -jumping numbers (cf. Definition 2.14),
and the smallest among them is the F -pure threshold, as introduced in [24]. Under finiteness hypotheses,
F -jumping numbers are known to be discrete and rational (see Theorem 3.1 of [6]). Needless to say, these
notions have been extended to non-principal ideals.

As the terminology suggests, the test ideals, F -jumping numbers and F -pure thresholds serve as charac-
teristic p > 0 analogues to the multiplier ideals, jumping numbers and log-canonical thresholds, respectively.
Remarkably, there is a deep and intricate relationship between these two theories. For instance, one can
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recover the log-canonical threshold from the F -pure threshold by letting p → ∞ (see Theorem 3.4 in [19]).
It is also known in several cases that the reduction modulo p of a multiplier ideal produces the corresponding
test ideal [20].

The F -pure threshold has been computed in a handful of cases. It is known, for instance, in the case
of elliptic curves, Calabi–Yau hypersurfaces, diagonal hypersurfaces and determinantal ideals, to name a
few [3, 4, 10, 17]. Among the few situations where test ideals have been fully characterized, there is the
case of determinantal ideals of maximal minors [9].

In general, finding F -jumping numbers and test ideals is a challenging problem, even in smooth ambient
spaces such as polynomial rings and with the aid of computational tools. To some extent, the aforementioned
known results rely on the favorable arithmetic and combinatorial properties of the objects involved. Without
these properties, very little can be said about F -invariants.

Our goal in this article is to compute the F -jumping numbers and test ideals for a new class of
polynomials, which we refer to as linearly square-free polynomials. These are polynomials whose monomials
are all square-free, meaning they are not divisible by any square of an indeterminate. In the process, we also
compute several other F -invariants useful for the theory, namely, the ν-invariants, Frobenius roots, and
Bernstein–Sato roots, which we will introduce in due course. Finally, we relate these computations to the
log-canonical threshold of linearly square-free polynomials in characteristic zero. This work originated from
the study of F -invariants for determinants of generic matrices of indeterminates in characteristic p > 0.
Subsequently, it was realized that the same ideas applied to linearly square-free polynomials.

Throughout, all rings considered will be commutative with unit.

2. Background

2.1 Frobenius powers and Frobenius roots

Let R be a ring of characteristic p > 0. We denote by F : R → R, f 7→ f p the Frobenius or p-th power
map. This is a ring endomorphism of R. For an integer e ≥ 0, we let F e : R → R, f 7→ f p

e
be the e-th

iterate of the Frobenius.

Definition 2.1. For an integer e ≥ 0, the e-th Frobenius power of an ideal I ⊆ R is

I [p
e ] = F e(I )R = (f p

e | f ∈ I ).

This is an ideal of R. In the case that I be generated by f1, ... , fn, one has

I [p
e ] = (f p

e

1 , ... , f p
e

n ).

Remark 2.2. When I is a principal ideal of R, say I = (f ), Frobenius powers and the usual powers coincide,

(f )[p
e ] = (f )p

e
.

A sort of converse operation to Frobenius powers are Frobenius roots. For principal ideals, Frobenius
roots were first introduced in [1] by Àlvarez-Montaner, Blickle and Lyubeznik, in order to study generators
of modules over rings of differential operators in positive characteristic. Afterwards, Frobenius roots were
generalized to the non-principal case by Blickle, Mustaţă and Smith in [6].
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Definition 2.3. For an integer e ≥ 0, the e-th Frobenius root of an ideal I ⊆ R is the smallest ideal J ⊆ R
in the sense of inclusion such that

I ⊆ J [p
e ].

We denote the e-th Frobenius root of the ideal I by I [1/p
e ]. For e = 0, we set I [1/p

e ] = I .

A celebrated theorem of Kunz states that a ring R of characteristic p > 0 is regular if and only if the
Frobenius F : R → R is a flat map [14]. Under the assumption of regularity, one can show that Frobenius
roots are well-defined. See, for instance, Lemma 2.3 of [6].

Remark 2.4. Let I1, I2 be ideals of R such that I1 ⊆ I2. Then one has

I1 ⊆ I2 ⊆ (I
[1/pe ]
2 )[p

e ].

Because I
[1/pe ]
1 is the smallest ideal with I1 ⊆ (I

[1/pe ]
1 )[p

e ], it follows that

I
[1/pe ]
1 ⊆ I

[1/pe ]
2 ,

hence Frobenius roots preserve ideal containments.

Remark 2.5. Let I , J be ideals of R and e ≥ 0 an integer. Then

I · J [1/pe ] ⊆ (I [p
e ]J)[1/p

e ].

Proposition 2.6 ([21, Lemma 2.3]). Let I , J be ideals of R and e ≥ 0 an integer. One has that I [1/p
e ] ⊆ J

if and only if I ⊆ J [p
e ].

We next describe a nice characterization of Frobenius roots in terms of generators, which will prove to
be computationally useful. To this end, we endow R with an exotic R-module structure.

Definition 2.7. For an integer e ≥ 0, define the R-module F e
∗R as follows. Its elements are denoted

by F e
∗ f , where f is in R. As an abelian group, F e

∗R is isomorphic to R, so addition is defined by

F e
∗ f + F e

∗ g = F e
∗ (f + g), for F e

∗ f ,F
e
∗ g ∈ F e

∗R.

The action of R on F e
∗R is defined by restricting scalars along the e-th iterate F e of the Frobenius, that is,

r · F e
∗ f = F e

∗ (r
pe f ), for r ∈ R, F e

∗ f ∈ F e
∗R.

Definition 2.8. A Noetherian ring R of characteristic p > 0 is an F -finite ring if F e
∗R is a finitely generated

R-module for some e ≥ 1 (equivalently, all e ≥ 1).

Proposition 2.9 ([1, Section 3], [6, Proposition 2.5]). Suppose that F e
∗R is a free R-module with ba-

sis ε1, ... , εn. Let I be an ideal of R generated by f1, ... , fm. For a generator fi , i = 1, ... ,m, write

F e
∗ fi = gi ,1F

e
∗ ε1 + · · ·+ gi ,nF

e
∗ εn, where gi ,1, ... , gi ,n ∈ R.

Then the e-th Frobenius root of I is

I [1/p
e ] = (gi ,j | i = 1, ... ,m, j = 1, ... , n).
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2.2 Test ideals and ν-invariants

From now on, let R be a regular F -finite ring of characteristic p > 0. For a real number x ∈ R, let ⌈x⌉ ∈ Z
denote the round-up of x , i.e. the least integer greater or equal than x .

As mentioned earlier, the test ideals are the characteristic p > 0 analogues of the multiplier ideals. We
adopt as a definition for the test ideal the characterization given in [6]:

Definition 2.10 ([6, Definition 2.9]). The test ideal of an ideal I ⊆ R with exponent λ ∈ R≥0 is

τ(Iλ) =
∞⋃
e=0

(I ⌈λp
e⌉)[1/p

e ].

Remark 2.11. It can be shown that the ideals on the right-hand side give an ascending chain in R,

(I ⌈λp⌉)[1/p] ⊆ (I ⌈λp
2⌉)[1/p

2] ⊆ · · · ⊆ (I ⌈λp
e⌉)[1/p

e ] ⊆ (I ⌈λp
e+1⌉)[1/p

e+1] ⊆ · · ·

(see Lemma 2.8 in [6]). Since R is a Noetherian ring, the chain eventually stabilizes:

τ(Iλ) = (I ⌈λp
e⌉)[1/p

e ], for some e ≫ 0.

Remark 2.12. Let 0 ≤ λ ≤ µ be real numbers. Because ⌈λpe⌉ ≤ ⌈µpe⌉, one has that

I ⌈λp
e⌉ ⊇ I ⌈µp

e⌉, for every e ≥ 1.

On the other hand, Remark 2.4 shows that Frobenius roots preserve inclusions, therefore

τ(Iλ) ⊇ τ(Iµ), whenever µ ≥ λ ≥ 0.

It follows from the remark above that test ideals give a descending chain of ideals of R. More explicitly,
given non-negative real numbers λ1 ≤ λ2 ≤ · · · ≤ λn ≤, one has that

τ(Iλ1) ⊇ τ(Iλ2) ⊇ · · · ⊇ τ(Iλn) ⊇ · · · .

Such chain of ideals can “jump”, i.e. the containments between test ideals may be strict. The results below
encode this behavior:

Theorem 2.13 ([19, Remark 2.12], [6, Corollary 2.16, Theorem 3.1]). Let I be an ideal of R.

(i) For each λ ≥ 0, there exists ε > 0 such that τ(Iλ) = τ(Iλ+ε). In particular, there exists λ > 0 small
enough such that τ(Iλ) = R.

(ii) There exist real numbers λ > 0 such that τ(Iλ−ε) ⊋ τ(Iλ) for all ε > 0.

Definition 2.14 ([24, Definition 2.1], [19], [6, Definition 2.17]). Let I be an ideal of R. A real number λ > 0
is an F -jumping number of I if

τ(Iλ−ε) ⊋ τ(Iλ), for every ε > 0.

The smallest F -jumping number is called the F -pure threshold of I , and denoted by fpt(I ), namely

fpt(I ) = sup{λ > 0 | τ(Iλ) = R}.
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F -jumping numbers were introduced under the name F -thresholds in [19], as an invariant to study the
jumping coefficients of the test ideals of Hara and Yoshida [8]. Afterwards, it was shown that the sets of
F -thresholds and F -jumping numbers are equal (see [6, Corollary 2.30]). On another note, one has the
following result relating the log-canonical threshold and the F -pure threshold:

Theorem 2.15 ([19, Theorem 3.4]). Let f be a polynomial with integer coefficients in C[x1, ... , xn]. For a
prime number p > 0, let fp denote the reduction modulo p of f in Fp[x1, ... , xn]. Then

lim
p→∞

fpt(fp) = lct(f ).

Another object closely related to the F -jumping numbers are the ν-invariants:

Definition 2.16 ([19]). Let I , J be ideals of R such that I ⊆ rad J, where rad J denotes the radical of J.
Fix an integer e ≥ 0. The ν-invariant of level e of I with respect to J is

νJI (p
e) = max{r ∈ Z | I r ̸⊆ J [p

e ]}.

Because I ⊆ rad J, this integer exists and is finite. The set ν•I (p
e) of ν-invariants of level e of I is the set

of integers of the form νJI (p
e) obtained as J ranges over the ideals containing I in its radical:

ν•I (p
e) = {νJI (pe) | J ⊆ R such that I ⊆ rad J}.

Remark 2.17. In view of Proposition 2.6, r ≥ 0 is the ν-invariant νJI (p
e) if and only if (I r )[1/p

e ] ̸⊆ J.

The ν-invariants were introduced precisely to study F -thresholds. In fact, the F -threshold cJ(I ) of I
with respect to J was defined in [19] as

cJ(I ) = lim
e→∞

νJI (p
e)

pe
.

Since F -thresholds and F -jumping numbers coincide when R is a regular ring, the ν-invariants are a powerful
tool for shedding light on test ideals.

In computing the ν-invariants of an ideal I , it is not evident how to choose an ideal J that contains I
in its radical. Instead, however, one can inspect the chain of ideals

· · · ⊆ (I r+1)[1/p
e ] ⊆ (I r )[1/p

e ] ⊆ · · · ⊆ (I 2)[1/p
e ] ⊆ I [1/p

e ] ⊆ R.

In some cases, the containments are, in fact, equalities. When they are not, the chain of ideals “jumps”. The
next proposition, together with Remark 2.17, shows that the spot where the chain jumps is a ν-invariant.

Proposition 2.18 ([21, Proposition 4.2]). The set of ν-invariants of level e ≥ 0 of an ideal I is

ν•I (p
e) = {r ≥ 0 | (I r+1)[1/p

e ] ̸= (I r )[1/p
e ]}.

2.3 Bernstein–Sato roots

The last algebraic invariants relevant to our discussion are the Bernstein–Sato roots. These are charac-
teristic p > 0 analogues to the roots of the Bernstein–Sato polynomial in characteristic zero, a concept
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that originated from Mustaţă’s work [18]. Mustaţă initiated the extension of Bernstein–Sato polynomials to
positive characteristic, an effort further advanced by Bitoun [5]. Due to the intricate nature of constructing
Bernstein–Sato roots, we will instead use the more straightforward characterization in terms of ν-invariants,
as provided by Quinlan-Gallego [21]. Before delving into this topic, we will briefly discuss p-adic limits and
integers.

The p-adic valuation on Z is the map vp : Z → Z≥0 defined by vp(0) = ∞ and

vp(n) = max {k ≥ 0 | pk divides n}, for n ̸= 0,

which naturally extends to a valuation vp : Q → Z≥0 by letting

vp
(a
b

)
= vp(a)− vp(b).

This induces the p-adic norm |·|p : Q → R, |x |p = p−vp(x), and in turn the p-adic metric dp : Q×Q → R,
dp(x , y) = p−vp(x−y). In this setting, the ring Qp of p-adic numbers is the completion of Q with respect
to the p-adic metric. The ring Zp of p-adic integers is the subring of Qp given by

Zp = {α ∈ Qp | |α|p ≤ 1}.

Because vp(n) ≥ 0 for every n ∈ Z, one has |n|p ≤ 1, therefore Z is contained in Zp. From the definition,
one also sees that Q is contained in Qp. A sequence (xn)

∞
n=0 ⊆ Q has p-adic limit α ∈ Qp if xn → α in

the p-adic metric. For more on p-adic numbers, we refer the interested reader to Section 7 in [21].

With this in mind, Bernstein–Sato roots are defined as follows:

Definition 2.19 ([21, Proposition 6.13], [22, Theorem IV.17]). Let I be an ideal of R. A p-adic integer α ∈
Zp is a Bernstein–Sato root of I if there exists a sequence (νe)

∞
e=0 ⊆ Z≥0 of ν-invariants of I , νe ∈ ν•I (p

e),
whose p-adic limit is α.

3. Linearly square-free polynomials

In this section we prove our main results, namely, the computation of Bernstein–Sato theory invariants for
linearly square-free polynomials in characteristic p > 0.

Definition 3.1. Let R = B[x1, ... , xn] be a polynomial ring over a commutative ring B. We say that a
polynomial in R is a linearly square-free polynomial if all its monomials are square-free.

Example 3.2. Let R = B[x11, ... , x1n, ... , xn1, ... , xnn] be a polynomial ring in n2 indeterminates. The
indeterminates may be assembled in an n × n generic matrix of indeterminates X = (xij). Then the
determinant of X ,

detX =
∑

σ∈Sym(n)

sgn(σ)x1σ(1) · · · xnσ(n),

is a linearly square-free polynomial.
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Example 3.3. Let X = (xij) be a 2n × 2n skew-symmetric matrix of indeterminates, that is, xij = −xji
for 1 ≤ i , j ≤ 2n. The Pfaffian of X is the polynomial

Pf X =
1

2nn!

∑
σ∈Sym(2n)

sgn(σ)
n∏

i=1

xσ(2i−1)σ(2i).

It can be shown that the Pfaffian satisfies (Pf X )2 = detX . Since no indeterminate appears twice in the
same monomial, the Pfaffian is linearly square-free.

Example 3.4. Let K be a field and W ⊆ KE be a realization of a matroid M, where E is a finite set
that forms a basis of KE . Then the configuration polynomial of W is linearly square-free (see [7]). These
polynomials have applications in physics.

The proposition below is a well-known fact that shows that F e
∗R has a particularly nice structure

provided R is a polynomial ring over a perfect field of characteristic p > 0. Recall that a field K of
characteristic p > 0 is perfect if the Frobenius F : K → K is an automorphism of K . This is tantamount
to every element of K having a pe-th root in K .

Proposition 3.5. Let R = K [x1, ... , xn] be a polynomial ring over a perfect field K of characteris-
tic Char(K ) = p > 0. For each integer e ≥ 0, one has that

F e
∗R ≃

⊕
0≤i1,...,in<pe

R F e
∗ x

i1
1 · · · x inn .

In consequence, the set {F e
∗ x

i1
1 · · · x inn | 0 ≤ i1, ... , in < pe} is a basis for F e

∗R. We refer to this as the
standard basis of F e

∗R.

We start by computing the Frobenius roots and the ν-invariants of linearly square-free polynomials.
This will lay the groundwork for further results. For the following lemma, it will be convenient to use
multi-index notation. If B[x1, ... , xn] is a polynomial ring in n variables, and a = (a1, ... , an) ∈ Zn

≥0 is an
n-tuple of non-negative integers, we let

xa = xa11 · · · xann .

Lemma 3.6. Let R = K [x1, ... , xn] be a polynomial ring over a perfect field K of characteristic p > 0. Let
f be a linearly square-free polynomial. Fix an integer e ≥ 0. Then for all integers 0 ≤ r < pe , F e

∗ f
r is a

nonzero K-linear combination of elements in the standard basis of F e
∗R.

Proof. Because f is linearly square-free, one has

f =
m∑
i=1

αix
ai , where αi ∈ K , ai = (ai1, ... , ain) ∈ {0, 1}n,

for some integer m ≥ 1, therefore

f r =
∑

k1+···+km=r

(
r

k1, ... , km

) m∏
i=1

αki
i x

kiai .
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The monomials in the expression above have the form

m∏
i=1

xkiai = x
∑m

i=1 kiai = x
∑m

i=1 kiai1
1 · · · x

∑m
i=1 kiain

n .

By assumption 0 ≤ r < pe , hence the indeterminate xj appears in each monomial with exponent

m∑
i=1

kiaij ≤
m∑
i=1

ki = r < pe .

It follows that
F e
∗ x

∑m
i=1 kiai , for i = 1, ... ,m,

is an element in the standard basis of F e
∗R. As a result, up to collecting terms, F e

∗ f
r reads

F e
∗ f

r =
∑

k1+···+km=r

((
r

k1, ... , km

) m∏
i=1

αki
i

)1/pe

F e
∗ x

∑m
i=1 kiai ,

which proves that the coefficients are in K . Because f r ̸= 0 and F e
∗R is a free R-module, some coefficient

is nonzero.

Theorem 3.7. Let R = K [x1, ... , xn] be a polynomial ring over a perfect field K of characteristic p > 0.
Let f be a linearly square-free polynomial. Fix an integer e ≥ 0. Then:

(i) For all integers s ≥ 0 and 0 ≤ r < pe ,

(f sp
e+pe−1)[1/p

e ] = (f sp
e+pe−2)[1/p

e ] = · · · = (f sp
e+1)[1/p

e ] = (f sp
e
)[1/p

e ] = (f )s .

(ii) The ν-invariants of f of level e are ν•f (p
e) = {(s + 1)pe − 1 | s ∈ Z≥0}.

(iii) If s ≥ 0 is an integer and J = (f )s+1, then νJf (p
e) = (s + 1)pe − 1.

Proof. (i) For a fixed integer s ≥ 0, Frobenius roots give an ascending chain

(f sp
e+pe−1)[1/p

e ] ⊆ (f sp
e+pe−2)[1/p

e ] ⊆ · · · ⊆ (f sp
e+1)[1/p

e ] ⊆ (f sp
e
)[1/p

e ].

In the case s = 0, Lemma 3.6 shows that F e
∗ f

pe−1 is a nonzero K -linear combination of elements in the
standard basis of F e

∗R. It follows from Proposition 2.9 that the Frobenius root (f p
e−1)[1/p

e ] is generated
by units of R, therefore (f p

e−1)[1/p
e ] = R. Now suppose that s ≥ 1. In view of the ascending chain above,

to prove equality it suffices to verify that

(f )s ⊆ (f sp
e+pe−1)[1/p

e ] and (f sp
e
)[1/p

e ] ⊆ (f )s .

On the one hand, by Remark 2.5,

(f )s = (f )s (f p
e−1)[1/p

e ] = (f s[p
e ]f p

e−1)[1/p
e ] = (f sp

e+pe−1)[1/p
e ].

On the other hand, by Proposition 2.6, the containment (f sp
e
)[1/p

e ] ⊆ (f )s is equivalent to (f )sp
e ⊆

(f )s[p
e ] = (f )sp

e
.
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(ii) Part (i) shows that for each integer s ≥ 0,

(f )s+1 = (f (s+1)pe )[1/p
e ] ⊊ (f (s+1)pe−1)[1/p

e ] = (f )s .

Then by Proposition 2.18, the ν-invariants of f of level e ≥ 0 are of the form (s + 1)pe − 1 for s ∈ Z≥0.

(iii) It follows at once from Definition 2.16 and part (ii).

Lemma 3.8. Let R = K [x1, ... , xn] be a polynomial ring over a perfect field K of characteristic p > 0 and
f be a linearly square-free polynomial. Let λ ≥ 0 be a real number and e ≥ 0 an integer. Then

(f ⌈λp
e⌉)[1/p

e ] =

{
(f )⌊λ⌋ if {λ} ≤ (pe − 1)/pe ,

(f )⌊λ⌋+1 if {λ} > (pe − 1)/pe ,

where {λ} denotes the fractional part of λ.

Proof. Write λ as λ = ⌊λ⌋ + {λ}. If {λ} ≤ (pe − 1)/pe , one has that ⌊λ⌋pe ≤ λpe ≤ ⌊λ⌋pe + pe − 1,
therefore ⌊λ⌋pe ≤ ⌈λpe⌉ ≤ ⌊λ⌋pe + pe − 1. Theorem 3.7 shows

(f )⌊λ⌋ = (f ⌊λ⌋p
e+pe−1)[1/p

e ] ⊆ (f ⌈λp
e⌉)[1/p

e ] ⊆ (f ⌊λ⌋p
e
)[1/p

e ] ⊆ (f )⌊λ⌋.

On the other hand, suppose that {λ} > (pe−1)/pe . Similarly, one finds ⌊λ⌋pe+pe−1 < λpe < ⌊λ⌋pe+pe ,
which gives ⌈λpe⌉ = ⌊λ⌋pe + pe . Again using Theorem 3.7 gives

(f ⌈λp
e⌉)[1/p

e ] = (f (⌊λ⌋+1)pe )[1/p
e ] = (f )⌊λ⌋+1,

thus proving the lemma.

Theorem 3.9. Let R = K [x1, ... , xn] be a polynomial ring over a perfect field K of characteristic p > 0.
Let f be a linearly square-free polynomial. Then:

(i) For a real number λ ≥ 0, one has τ(f λ) = (f )⌊λ⌋.

(ii) The set of F -jumping numbers of f is FJN(f ) = Z≥1. In particular, the F -pure threshold of f is 1.

Proof. (i) Since the sequence ((pe − 1)/pe)∞e=0 has limit 1 as e → ∞, there is an integer e0 satisfying
{λ} ≤ (pe − 1)/pe for all e ≥ e0. It follows from Lemma 3.8 that (f ⌈λp

e⌉)[1/p
e ] = (f )⌊λ⌋ for e ≥ e0,

therefore τ(f λ) = (f )⌊λ⌋.

(ii) Fix an integer n ≥ 0. Then τ(f λ) = (f )⌊λ⌋ = (f )n for all real numbers λ with n ≤ λ < n + 1. On the
other hand, one has τ(f n+1) = (f )n+1. Consequently n+1 is an F -jumping number of f , and the assertion
follows.

Corollary 3.10. Let f be a linearly square-free polynomial with integer coefficients in C[x1, ... , xn]. The
log-canonical threshold of f is lct(f ) = 1.

Proof. Let p > 0 be a prime number and fp be the reduction modulo p of f in Fp[x1, ... , xn]. If p does
not divide all the coefficients of f , then fp is nonzero and thus linearly square-free, hence fpt(fp) = 1 by
Lemma 3.8. This occurs for all p large enough, so lct(f ) = 1 by Theorem 2.15.
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Corollary 3.11. Let R = K [x1, ... , xn] be a polynomial ring over a perfect field K of characteristic p > 0.
The only Bernstein–Sato root of a linearly square-free polynomial f is α = − fpt(f ) = −1.

Proof. Let (td)
∞
d=0 ⊆ Z≥0 be a sequence of non-negative integers and define

νd := (td + 1)pd − 1, for d ≥ 0.

In view of Theorem 3.7, each νd is a ν-invariant of f . We thus obtain a sequence (νd)
∞
d=0 ⊆ Z≥0 of

ν-invariants with p-adic limit νd → α = −1 as d → ∞. In consequence, α = − fpt(f ) is a Bernstein–Sato
root of f . Because any sequence of ν-invariants of f is of this form, it follows that α = fpt(f ) is the only
Bernstein–Sato root of f .

The corollary above allows one to answer the following question.

Question 3.12 ([21, Question 6.16]). Suppose that the F -pure threshold α of an ideal I lies in Z(p), the

localization of Z at {pk | k ≥ 0}. Is the largest Bernstein–Sato root of I equal to −α?

The answer is affirmative for linearly square-free polynomials in any characteristic p > 0.
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d’aquesta construcció i donem exemples f́ısics.

Abstract (ENG)
In this article, we present symplectic and Poisson geometry from the perspective of

Hamiltonian mechanics. We then introduce symplectic Lie algebroids, objects which

lie between symplectic and Poisson manifolds. Afterwards, we recall the notion of

symplectic reduction under the existence of a moment map. As an application of

this construction, we describe the phase space of a charged particle interacting with

a Yang–Mills field. Finally, we introduce a singular analogue of this construction

and provide physical examples.

Keywords: Poisson geometry, reduction, minimal coupling, Lie algebroid.
MSC (2020): Primary 53D17, 53D20. Secondary 53C12.

Received: August 1, 2024.
Accepted: September 1, 2024.

65https://reportsascm.iec.cat Reports@SCM 9 (2024), 65–76; DOI:10.2436/20.2002.02.43.

A promenade through singular
symplectic geometry
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A promenade through singular symplectic geometry

1. Introduction

Classical mechanics was inaugurated by the works of Isaac Newton. After his contribution, different ap-
proaches to write Newton’s equations of motion were developed, commonly with the goal of improving
certain aspects of the previous formalism. In Hamiltonian mechanics, the equations of motion are a system
of first order ordinary differential equations, known as Hamilton’s equations. This feature makes easier
discussing qualitative aspects of solutions from the perspective of dynamical systems. Moreover, the dual
behavior of symmetries and conserved quantities, originally established by Emmy Noether for Lagrangian
systems, becomes transparent in the Hamiltonian formalism.

Symplectic geometry can be regarded as an abstraction of Hamiltonian dynamics for smooth manifolds.
Poisson geometry is a further generalization of the symplectic setting, where the relevant structure is
the Poisson bracket defining the evolution of observables along the dynamics of the system. As we will
see, Poisson structures vastly generalize symplectic structures and, consequently, many results from the
symplectic category fail to be transferred to Poisson manifolds. Symplectic Lie algebroids define Poisson
structures which, although not arising from a symplectic form, have a very close behavior to them. In
physics, these objects allow to describe physical systems with degenerate or constrained dynamics. In
mathematics, they have proved to be the adequate language to establish results for a class of Poisson
structures.

New discoveries in particle physics during the XX century posed the problem of incorporating the weak
and strong forces into mechanics. The satisfactory formulation was proposed by Yang and Mills, and is
nowadays known under the name of gauge theory.1 The equations describing the motion of a charged
particle under the presence of a Yang–Mills field are a generalization of Lorentz’s force equation, and are
known as Wong’s equations. Sternberg showed how Wong’s equations fit into the Hamiltonian formalism of
mechanics. Weinstein additionally proved that the phase space constructed by Sternberg could be realized
as the reduction of a universal space for particles interacting with Yang–Mills fields.

The goal of this article is to fill the picture introduced in this section. In Section 2 we recall the funda-
mentals of symplectic and Poisson geometry from the Hamiltonian formalism of mechanics. In Section 3 we
introduce Lie algebroids and E -symplectic manifolds as objects between symplectic and Poisson structures.
We will additionally give examples of interest where they have been fruitfully applied. In Section 4 we
remember the interplay between conserved quantities and symmetries, codified in the moment map of a
Hamiltonian action. The presence of symmetries allows for elimination of degrees of freedom, a procedure
formalized by the reduction theorem of Marsden and Weinstein. We present Sternberg’s and Weinstein’s
constructions, and show how they have been extended to the setting of E -symplectic manifolds.

2. Symplectic and Poisson geometry

2.1 Symplectic geometry

Symplectic geometry can be considered an abstraction of the Hamiltonian formulation of classical me-
chanics. In this formalism, the equations of motion in the Euclidean space R2n, described in terms of

1In mathematics, gauge theories refer to the study of connections in vector and principal bundles. The name of Yang–Mills
theories is reserved to the study of solutions to the Yang–Mills equations.
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coordinates pi , qi , can be recovered from a function H ∈ C∞(R2n), called the Hamiltonian, following
Hamilton’s equations of motion:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (1)

The previous set of equations can be compactly written using matrix notation as XH = J · ∇f , where J is
the standard skew-symmetric matrix. Common choices in physics for the Hamiltonian are energy functions
of the form H = 1

2m

∑
p2i + V (q) for some smooth function V ∈ C∞(R2n), called the potential of the

system.

In many examples, as in systems with constraints, it is better to work directly in the setting of dif-
ferentiable manifolds. To write the previous set of equations in an abstract manifold, however, we need
to choose additional data relating the Hamiltonian vector field XH and the differential dH. Equation (1)
suggests that we should choose a skew-symmetric and non-degenerate tensor ω ∈ Ω2(M). For many results
to hold we have to additionally impose the form ω to be closed. While there is good geometric motivation
behind this requirement, we do not have the space to delve into this matter.

Definition 2.1. Let M be a smooth manifold. A non-degenerate, closed two-form ω ∈ Ω2(M) is called a
symplectic form. We call any such pair (M,ω) a symplectic manifold.

Following the previous analogy between ω and the matrix J, Hamilton’s equations of motion (1) should
be written in this new language as

ιXH
ω = −dH.

There is no apparent reason to believe this expression should be related in general to equations (1). It is a
theorem of Darboux that this is, indeed, the case. More precisely, we have the following:

Theorem 2.2 (Darboux). Let (M,ω) be a symplectic manifold. For every point p ∈ M there exists a
chart φ : U ⊂ Rn → M centered at p with coordinates qi , pj such that

φ∗ω =
n∑

i=1

dqi ∧ dpi .

This result is very powerful because it shows that symplectic geometry has no local invariants. Conse-
quently, all interesting information in symplectic manifolds has to be of topological/global nature.

2.2 Poisson geometry

Poisson brackets were originally introduced to study the evolution of observables, i.e., smooth functions,
along the Hamiltonian dynamics. In more mathematical terms, if we define the Poisson bracket of H and f
to be the derivative of f along the flow of XH , Hamilton’s equations (1) directly show

{H, f } =
n∑

i=1

∂H

∂pi

∂f

∂qi
− ∂H

∂qi

∂f

∂pi
. (2)

In the more general setting of symplectic geometry there exists an analogue generalization of the Poisson
bracket given by the formula

{f , g} = ω(Xf ,Xg ). (3)
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Poisson showed that his eponymous bracket (2) is linear in both arguments, skew-symmetric, satisfies
Leibniz’s rule and Jacobi’s identity holds:

{f , {g , h}}+ {g , {h, f }}+ {h, {f , g}} = 0.

Even though any bracket arising from (3) satisfies these conditions, there are brackets fulfilling these
properties which cannot be defined in this way. A trivial example is the Poisson bracket {f , g} = 0 for
all f , g ∈ C∞(M). The systematic study of these objects is the branch of Poisson geometry.

Definition 2.3. A Poisson bracket on a smooth manifold M is a bilinear, skew-symmetric operation
{·, ·} : C∞(M)× C∞(M) → C∞(M) satisfying Leibniz’s rule in each argument and Jacobi’s identity.

There is an alternative and useful characterization of Poisson brackets. Given any bracket {·,·}: C∞(M)×
C∞(M) → C∞(M) satisfying Leibniz’s rule and linearity in each variable, we can recover its action on any
functions f , g ∈ C∞(M) as the contraction of a two-tensor field Π ∈ T 2M with the differentials df , dg .
Moreover, because the Poisson bracket is skew-symmetric, there exists a unique bivector field Π ∈ X2(M)
representing the bracket {·, ·} in the sense that

{f , g} = ⟨df ∧ dg , Π⟩

for any smooth functions f , g ∈ C∞(M). Jacobi’s identity, however, does not hold for general bivector
fields. It turns out to be equivalent the integrability condition J = [Π,Π] = 0. The trivector field J , up
to a factor, is appropriately called the Jacobiator, and the bracket [·, ·] is an extension of the Lie bracket
of vector fields to the space of all multivector fields called Schouten–Nijenhuis bracket.

Given the great generality of these structures, there is no local normal form for Poisson structures
similar to Darboux’s Theorem 2.2. The closest analogue is the following result due to Weinstein.

Theorem 2.4 (Weinstein [15]). Let (M, Π) be a Poisson manifold. For every point p ∈ M there exists a
chart φ : U ⊆ M → Rn with coordinates qi , pj , rk such that

φ∗Π =
k∑

i=1

∂

∂qi
∧ ∂

∂pi
+

n−2k∑
i ,j=1

fij(rl)
∂

∂ri
∧ ∂

∂rj
.

Moreover, the functions fij are skew-symmetric and vanish at 0.

This local structure theorem is commonly called the splitting theorem because it states that, locally,
every Poisson manifold splits as the direct product of a symplectic manifold and a Poisson manifold with
vanishing Poisson structure at the origin. Observe this transverse Poisson structure measures the difference
of a Poisson manifold from being symplectic.

We would like to highlight two immediate consequences from Weinstein’s theorem. Firstly, the splitting
shows that any Poisson manifold admits a foliation by symplectic leaves, called the symplectic foliation of
the manifold. This shows that part of the Poisson structure can be encoded in the symplectic structures
of the leaves. Secondly, there is a well-defined notion of transverse Poisson structure. In contrast with the
symplectic realm, Poisson manifolds do have local invariants. As such, their study is much more complicated.
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3. Singular symplectic geometry

We have seen that the class of symplectic manifolds fits very naturally within the class of Poisson manifolds.
The class of Poisson manifolds is, however, much bigger and wilder than that of symplectic manifolds. As
such, there are some interesting and nice results in the symplectic category that do not hold in Poisson
geometry. One instance of this phenomenon is hinted in the difference between Darboux’s Theorem 2.2
and Weinstein’s Theorem 2.4.

There are many specific examples of Poisson manifolds which, although not being symplectic, can be
understood in a symplectic flavour if we are willing to work with singularities. Take as an example the
simplest degenerate Poisson structure with its dual form,

Π = z
∂

∂z
∧ ∂

∂t
+

n∑
i=2

∂

∂xi
∧ ∂

∂yi
,

ω =
dz

z
∧ dt +

n∑
i=2

dxi ∧ dyi .

The form ω is clearly not a symplectic form, because it is not even well-defined as a smooth differential
form. It becomes a symplectic form, in some sense, if we restrict its domain to the space of vector fields
tangent to the hypersurface {z = 0}.

We can informally call ω a singular symplectic form. The objective of this section is to elevate this idea
to a rigorous statement. We begin by defining the main objects of the discussion.

Definition 3.1. A Lie algebroid is a vector bundle π : A → M together with a vector bundle map ρ : A →
TM covering the identity and equipped with a Lie bracket [·, ·]A on the space of sections ΓA. Moreover,
the bracket satisfies, for any X ,Y ∈ ΓA and f ∈ C∞(M), the following compatibility conditions:

[X , fY ]A = f [X ,Y ]A + Lρ(X )f · Y , (5a)

ρ([X ,Y ]A) = [ρ(X ), ρ(Y )]. (5b)

In equation (5a), the operator L denotes the Lie derivative of a function along a vector field.

Equation (5a) is a generalized Leibniz’s identity for the bracket. Equation (5b) turns out to be redundant,
as it can be deduced from (5a). We have chosen to explicitly state it because it will be relevant for upcoming
discussions.

Let us take a brief detour and precisely describe how these objects arise in the description of systems
with singularities. We will present examples arising from physics where all the following assumptions are
satisfied. Consider that the equations of motion of our system can be described in terms of a C∞ sub-
sheaf of vector fields F ⊆ X. Furthermore, assume the sheaf is locally finitely generated, that is, for any
point p ∈ M there is an open set U containing p and sections X1, ... ,Xm ∈ FU such that their restriction
to any open set V ⊆ U generates FV . We can make two additional assumptions, each of which gives rise
to well-known objects in differential geometry.

• If we additionally assume the integrability condition [F ,F ] = F , the sheaf F defines a singular
foliation in the sense of Androulidakis and Skandalis. These objects can be integrated to give standard
singular foliations, or foliations in the sense of Stefan and Sussman.
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• If the sheaf is not only locally finitely generated but also locally free, it is a theorem of Serre [11] in
the algebraic setting and Swan [13] in the continuous case shows the sheaf F can be recovered as
the sheaf of sections of a vector bundle E .

If both assumptions are simultaneously made, we get projective foliations or Debord foliations. If E is a
representing vector bundle for F in the sense that F = ΓE , we get a natural map of vector bundles ρ : E →
TM given by the evaluation of a section at a point. This map is called the anchor, and is injective in an
open and dense subset U ⊆ M, i.e., generically injective. The integrability condition [F ,F ] ⊆ F lifts to a
bracket in the space of sections ΓE . One can easily check that the compatibility conditions (5a) and (5b)
are satisfied and, thus, any such object is an instance of a Lie algebroid.

Not all Lie algebroids arise this way as, in general, the anchor map ρ : A → TM is not generically
injective. The class of algebroids previously presented will be relevant in upcoming sections, so we will give
them a proper name.

Definition 3.2. Let M be a smooth manifold. An E-structure is the choice of a Debord foliation F ⊆ X
or, equivalently, a vector bundle π : E → M with a generically injective map ρ : E → TM. We call the
pair (E ,M) an E-manifold.

This construction shows that we can consider Lie algebroids, at least psychologically, as a replace-
ment of the standard tangent bundle TM. As such, we can consider the dual bundle A∗ and its exterior
powers

∧k A∗. Sections of these bundles are called, by analogy with the standard setting, k-differential
A-forms. The space of all sections is written Ωk

A(M). The Lie bracket [·, ·]A induces an exterior differential
in the spaces Ωk

A(M) following the standard Koszul formula,

dAω(X0, ... ,Xk) =
k∑

i=0

(−1)iLρ(Xi )ω(X0, ... , X̂i , ... ,Xk)

+
∑

0⩽i<j⩽k

(−1)i+jω([Xi ,Xj ],X0, ... , X̂i , ... , X̂j , ... ,Xk).

In the previous formula, an argument with a hat implies it has been suppressed from the collection of
inputs. A routine verification shows d2A = 0. The cohomology spaces of the complex of A-forms are called
Lie algebroid cohomology groups.

With the notion of differential forms and exterior calculus for systems with constraints, we can define
a symplectic form mimicking the standard definition in classical differential geometry.

Definition 3.3. Let π : A → M be a Lie algebroid. A symplectic form on A is a two form ω ∈ Ω2
A(M) which

is closed and non-degenerate. We call the pair (A,ω) a symplectic Lie algebroid. Similarly, if π : E → M
is an E -manifold, we call the pair (E ,ω) an E-symplectic manifold.

In this setting, the non-degeneracy condition amounts to requiring the vector bundle morphism

ω♭ : A −→ A∗

X 7−→ ιXω

to be an isomorphism. Its inverse map is written ω♯ : A∗ → A. As a consequence, we can define the
Hamiltonian vector field associated to a function H as the unique solution to the equation

ιXH
ω = −ρ∨dH.

In the previous equation, the map ρ∨ : T∗M → A∗ denotes the adjoint of the anchor map ρ : A → TM.
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We motivated the construction of Lie algebroids and symplectic forms on them to study Poisson
structures with certain types of singularities. Any symplectic Lie algebroid indeed defines a Poisson bracket
as

{f , g} = ω(Xf ,Xg ).

This mapping is clearly bilinear, skew-symmetric, and satisfies Leibniz’s identity. Jacobi’s identity is not as
evident but it is a consequence of the closedness of ω as a singular symplectic form.

Before concluding this section, let us briefly discuss two different examples of E -manifolds which have
found success in Poisson geometry.

We begin by describing b-symplectic manifolds. In this case, the sheaf of vector fields considered is
taken to be the sheaf of tangent vectors to an embedded hypersurface Z ⊆ M. The Lie algebroid obtained
is called the b-tangent bundle. It was originally considered by Melrose [5] in order to generalize the index
theorem to manifolds with boundary. The symplectic geometry of b-manifolds has been extensively studied
and described by Guillemin, Miranda, and Pires [2]. The school of Miranda has done remarkable work in
studying the interplay of b-symplectic geometry with integrable systems, geometric quantization, KAM
theory, and many more.

These objects are generalized by bm-symplectic manifolds. The sheaf of vector fields into consideration
is once again the sheaf of all fields tangent to a fixed hypersurface Z , but now we fix with degree of
tangency to be at least m. The definition of these structures is due to Scott [10], where some technical
details concerning additional data are discussed. This singular symplectic models have found applications
in studying the topology of escape orbits in the planar, restricted, circular three body problem [7].

4. Reduction by symmetries and minimal coupling

One of the central ideas in the study of physical systems is that of symmetries. In the presence of a
group of transformations that leaves the motion of the system unchanged, one can reduce the number of
parameters by an appropriate choice of coordinates (or frames of reference). A remarkable instance of this
phenomenon is Euler’s solution to the two-body problem. The invariance by linear translations allows the
origin of the frame of reference to be taken in the center of mass, while the invariance by rotations implies
the confinement of both bodies to a plane and one additional constraint.

These invariance by transformation groups of the system can be dually read as conservation laws.
The invariance by linear transformations is equivalent to the conservation of linear momentum, while the
invariance by rotations is equivalent to the conservation of angular momentum. The observation that this
phenomenon is a general feature is due to Emmy Noether and, as such, the conserved quantities obtained
from a symmetry are called Noether charges.

This correspondence is transparent in the symplectic formulation of classical mechanics. To describe
it, we will need to define what does it mean for an action of a Lie group G on (M,ω) to be Hamiltonian.
Intuitively, we would like the fundamental vector fields of the action to be Hamiltonian: in other words, we
are asking for a lift µ• of the fundamental vector field map •# in the following commutative diagram:

0 R C∞(M) XHam(M) 0

g

X•

µ• •# (6)
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Here, we have tacitly assumed M is connected so that H0(M) = R. There always exists such a lift at
the level of vector spaces: as X• : C∞(M) → XHam(M) is surjective, we can choose the preimage of a set
of generators and extend by linearity.

There are obstructions for the map µ• : g → C∞(M) to be a morphism of Lie algebras, where we endow
C∞(M) with the Poisson bracket as Lie bracket. The failure to have a Lie algebra morphism is measured
by the map

c(X ,Y ) = {µX ,µY } − µ[X ,Y ].

As the projection of this element to XHam(M) vanishes by the commutativity of the diagram, we can identify
the image c(X ,Y ) with an element in the kernel kerX• ≃ R. This map thus determines an element in
the Chevalley–Eilenberg complex, c ∈ C(g;R). The map c is closed, and hence determines a class in the
cohomology group H2(g;R). The lift µ• can be chosen to be a Lie algebra morphism if and only if [c] = 0.
Moreover, all possible such choices are parametrized by elements of the group H1(g;R).

Assuming some conditions on the Lie group G ,2 there is a uniquely determined lift which we call the
comoment map. By construction, it intertwines the adjoint action in g with the induced pullback action
in C∞(M). As the name hints, however, it is better to think of the comoment map in terms of a dual
object called the moment map.

Definition 4.1. Let (M,ω) be a symplectic manifold and let G be a Lie group acting on M. We say the
action is Hamiltonian if there exists a map µ : M → g∗, called the moment map, satisfying the following
conditions:

ιX#ωp = −d⟨µ(p),X ⟩ for all X ∈ g, p ∈ M, (7a)

µ ◦ ρg = Ad∗g ◦µ for all g ∈ G . (7b)

We call any such triple (M,ω,µ) a Hamiltonian G-space.

Equation (7a) is reminiscent of the equivariance of the comoment map. Equation (7b) is a direct
consequence of the fact that the fundamental vector fields of g act in a Hamiltonian fashion: indeed, all
we are saying is that ⟨µ,X ⟩ is the Hamiltonian function of X# or, following (6), the comoment map µX .

Let us assume now we are given a Hamiltonian G -space (M,ω,µ) with a G -invariant Hamiltonian H
and equations of motion determined by XH . Assume H is an invariant function under the action of G . We
will also assume the group G is connected. This technical condition ensures that any Hamiltonian action
is also a symplectic action, that is, preserves the form ω. Two consequences arise from these facts.

Firstly, observe XH is G -invariant. We recall the symplectic form ω is G -invariant because we assume
G is connected. Because the Hamiltonian H is G -invariant, we have

ιρg ·XH
ω = ρ∗g−1ιXH

ρ∗gω = ρ∗g−1dH = dH = ιXH
ω.

As a consequence, we deduce XH = ρg · XH .

Secondly, assume we are given a regular value α ∈ g∗ of µ. By equivariance, every other value β ∈ Oα

is regular, and thus the preimage Mα = µ−1(Oα) is a submanifold. By invariance of H we have LX#H = 0.
The definition of moment map implies now

0 = LXH
µX = ⟨dµX ,XH⟩ = ⟨ιXH

µ,X ⟩.
2For example, if G is semisimple, we know by Whitehead’s lemmas that H1(g;R) = H2(g;R) = 0. The semisimplicity

assumption is automatically satisfied if G is a compact group.

https://reportsascm.iec.cat72

https://reportsascm.iec.cat


Pablo Nicolás Mart́ınez

As this equality holds for all X ∈ g, we have ⟨dµ,XH⟩ = 0. This result implies XH is tangent to the level
sets of µ and, by G -invariance, to the preimages of the coadjoint orbits.

Thus, the dynamics defined by XH can be restricted to the submanifold µ−1(Oα) and can be further
projected to the quotient manifold µ−1(Oα)/Gα, assuming technical conditions on the action of G .3

Marsden and Weinstein observed that this reduced space is once again a symplectic manifold, and hence
one can consider Hamiltonian dynamics with respect to the reduced symplectic structure.

Theorem 4.2 (Marsden–Weinstein [4]). Let (M,ω) be a symplectic manifold and assume G is a compact
Lie group acting on M with moment map µ : M → g∗. If α ∈ g∗ is a regular value of µ, then the
space µ−1(Oα)/Gα is a symplectic manifold with symplectic form ωred. Moreover, it is uniquely determined
by

i∗αω = π∗ωred.

4.1 The minimal coupling procedure

We will describe a procedure to construct the phase space of a charged particle interacting with a Yang–
Mills field. The presentation we take is essentially due to Sternberg [12]. Assume we are given a principal
G -bundle π : P → X over a symplectic manifold (X ,ω) and a Hamiltonian G -space (Q, Ω) with moment
map µ. We can construct a symplectic structure in the adjoint bundle P ×G Q by choosing a principal
connection η ∈ Ω1(X ; adP) in the following way. Sternberg shows the two-form d⟨µ, η⟩ + Ω in P × Q
descends to a well-defined and closed two-form Ωη ∈ Ω2(P ×G Q). Under a non-degeneracy assumption,
the manifold (P ×G Q,ω +Ωη) is symplectic and the previous construction is called the minimal coupling
procedure. The additional term Ωη is known in the literature as the magnetic term. If we take (Q, Ω) to
be a coadjoint orbit of an irreducible representation of a Lie group G , we obtain the classical phase spaces
of charged particles [12].

Sternberg mentions that, in the case where X = TM with its canonical symplectic form, the previous
non-degeneracy assumption is always satisfied. Weinstein went beyond this observation and proved Stern-
berg’s phase space can be obtained as the symplectic reduction of a universal phase space. The role of the
connection is made explicit in terms of an isomorphism between his construction and Sternberg’s. More
concretely, we can summarize Weinstein’s results in the following theorem.

Theorem 4.3 (Weinstein [14]). Let π : P → M be a principal G-bundle and let (Q, Ω) be a Hamiltonian
G-space with moment map µQ . Let P

# be the pullback bundle of π by the submersion T∗M → M.

Then, the space T∗P ×Q is a G-Hamiltonian space for the diagonal G-action with moment map4 µ =
µP + µQ . Any choice of connection in P induces a diffeomorphism µ−1(0) ≃ P# ×Q which, furthermore,
induces a diffeomorphism of the symplectic spaces µ−1(0)/G and P# ×G Q.

The symplectomorphism induced by this choice of connection is called the minimal coupling of the
system. Given a Hamiltonian in the base space, H ∈ C∞(T∗M), we can consider its pullback to either
space and get equivalent dynamics. The induced equations of motion are called Wong’s equations [8].

3Namely, freeness and properness. The latter is satisfied if G is a compact group, which we have enforced since the
construction of the moment map.

4In this formula, the moment map µP : T
∗P → g∗ is the natural moment map obtained for the cotangent lift of any

G -action to the cotangent bundle with the canonical symplectic form.
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There is an interesting interpretation of this construction by Montgomery [9]. The choice of a connection
yields the commutative diagram

P# ×G Q µ−1(0)/G

T∗M

Φ

π h∨

Here, the projection π is completely natural and is induced from the projection of the pullback bun-
dle π : P# → T∗M. The map h∨ is the dual of the horizontal lift h : TM → TP, completely determined
and equivalent to the choice of connection. Therefore, we have two different ways to understand Wong’s
equations of motion. In the space P# ×G Q, the Hamiltonian function does not get modified but the
symplectic structure absorbs the additional factor Ωη. In the universal model µ−1(0)/G , the symplectic
form is canonical but the Hamiltonian function gets twisted by the pullback under h∨.

4.2 The singular minimal coupling

The minimal coupling enables the study of classical particles interacting with Yang–Mills field in the
symplectic formulation. The extension of this construction to include systems modeled with E -manifolds
was proposed by Mir, Miranda, and Nicolás [6]. More concretely, one of the results proved is the following
analogous statement to Theorem 4.3.

Theorem 4.4 (Mir–Miranda–Nicolás [6]). Let π : P → M be a principal G-bundle over an E-manifold E →
M and let (Q, Ω) be a Hamiltonian G-space with moment map µQ . Let P# be the pullback bundle of π
by the submersion E ∗

M → M.

Then, the space E ∗
P × Q is a G-Hamiltonian space for the diagonal G-action with moment map µ =

µP + µQ . Any choice of connection in P induces a diffeomorphism µ−1(0) ≃ P# ×Q which, furthermore,
induces a diffeomorphism of the symplectic spaces µ−1(0)/G and P# ×G Q.

Throughout the rest of the section we will fix an E -manifold EM → M and a principal G -bundle P → M.
The proof of Theorem 4.4 follows essentially the same argument as Weinstein. The complication lies in
developing the machinery necessary to state and follow the original proof. Since we would like to extend
the singularities of our configuration space M to the bundles EM and P, we need a procedure to do so. The
fundamental notion is that of prolongation, which dates back at least to the works of de León, Marrero,
and Mart́ınez [1].

Definition 4.5. Assume f : N → M is a surjective submersion over a Lie algebroid A → M. The prolonga-
tion of A along f , written LfA, is the pullback bundle of the morphisms df : TN → TM and ρ : A → M.
As a set, it can be identified with

LfA = {(X ,Y ) ∈ A× TN | ρ(X ) = df (Y )}.

Throughout the rest of the section, we fix an E -manifold E → M. The prolongation of the dual
bundle E ∗

M → M, which can be thought as the singular tangent bundle of the cotangent bundle, carries
a natural Liouville form whose differential is symplectic [1]. Thus, the prolongation of E ∗

M is a symplectic
E -manifold, in strong resemblance to the cotangent bundle of a smooth manifold.
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Similarly, we consider the prolongation of the principal G -bundle P → M. Because EP → P has a
natural action of the Lie group G and the anchor map is injective on an open and dense subset, the action
on P lifts to an action on EP which factors through the standard tangent map. By duality, the action lifts
to the dual bundle E ∗

P and, moreover, it becomes Hamiltonian with respect to the canonical symplectic
structure. The fact that the action of the Lie group G automatically lifts to EP is only valid for E -manifolds.
If we want to establish similar results for symplectic Lie algebroids, stronger compatibility assumptions are
needed to define Hamiltonian group actions (see [3]).

The last ingredient in the proof of Theorem 4.4 is the notion of symplectic reduction in the singu-
lar setting. The authors rely on a version of the reduction theorem developed by Marrero, Padrón, and
Rodŕıguez-Olmos for symplectic Lie algebroids (Theorem 3.11 in [3]).

In [6] the authors consider some standard configuration spaces with singularities, such as the compact-
ification of a stationary black hole or a general bm-manifold, motivated by previous contributions in the
literature of celestial mechanics. Moreover, they explicitly compute Wong’s equations describing the motion
of a charged particle interacting with a Yang–Mills field.

5. Conclusions

Symplectic manifolds are fundamental objects in the geometric formulation of Hamiltonian dynamics.
These give rise to Poisson brackets, which measure the evolution of observables along the trajectories of
the system but are vastly more general. E -Symplectic manifolds lie between both worlds: even though they
define Poisson structures, their behavior is closer to symplectic forms. Moreover, they naturally encode
certain physical systems with constrained dynamics.

Theorem 4.4 extends the classical minimal coupling procedure to E -symplectic manifolds. In more
physical terms, it provides a Hamiltonian formulation of the equations of motion of particles under the
interaction with a Yang–Mills field for constrained systems. This result could open the door to study
the dynamics of such physical systems using geometric techniques. Indeed, in [7] the authors obtain a
b3-symplectic structure in the planar, restricted, circular three-body problem and, using a contact analogue
of the theory described here, discuss the existence of periodic orbits at infinity. No analogue result has been
established for charged particles.
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primer lloc calculem la distribució ĺımit per a diferents maneres de fer el ĺımit.

En segon lloc donem una fórmula tancada per a la diferència acumulada entre la

distribució d’exponents espectrals de Hodge i una distribució cont́ınua, la qual és

el ĺımit més comú. Utilitzem aquesta expressió per a obtenir intervals de valors

dominants.

Abstract (ENG)
The Hodge spectral exponents are a discrete set of invariants of an isolated hyper-

surface singularity. We study their distribution for the case of plane branches, in

terms of numerical invariants of the branch. First, we calculate the limit distribu-

tion for different ways of taking the limit. Secondly, we provide a closed formula

for the cumulative difference of the distribution of Hodge spectral exponents with

a continuous distribution, which is the most common limit. We use this expression

to obtain intervals of dominating values.
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1. Introduction

Let f : (Cn+1, 0) → (C, 0) be a germ of a holomorphic function (or equivalently a convergent power
series f ∈ C{x0, ... , xn}) with an isolated singularity at the origin. Using the canonical mixed Hodge
structure of the cohomology groups of the Milnor fiber of f , Steenbrink [7] defined the Hodge spectrum
of f as the generating function

Spf (T ) =

µ∑
i=1

Tαi ,

where µ = dimC
C{x0,...,xn}(
df
dx0

,..., df
dxn

) is the Milnor number and the positive rational numbers

0 < α1 ⩽ · · · ⩽ αµ < n + 1

form a discrete set of invariants of the singularity f called Hodge spectral exponents (or spectral numbers).
They are symmetric with respect to (n + 1)/2, i.e., for every j = 1, ... ,µ, we have αµ+1−j = (n + 1)− αj

and thus it is enough to study them in the interval (0, (n + 1)/2].

Another interesting feature proved by Varchenko [10] is that the Hodge spectral exponents of f are
stable under deformations with constant Milnor number µ. A deformation of a hypersurface f (x0, ... , xn) ∈
C{x0, ... , xn} is a family of hypersurfaces ft1,...,tk (x0, ... , xn) for some set of parameters (t1, ... , tk) ∈ S ⊆ Ck ,
satisfying f (x0, ... , xn) = f0,...,0(x0, ... , xn). Then, in Varchenko’s result we are asking that the Milnor number
of ft1,...,tk (x0, ... , xn) is the same for all (t1, ... , tk) ∈ S .

K. Saito [4] considered the normalized spectrum which he denoted as the characteristic function

χf (T ) =
1

µ

µ∑
i=1

Tαi .

We may also display the Hodge spectral exponents as a discrete (probability) distribution on R. Namely,
the distribution of the Hodge spectral exponents is

Df (s) =
1

µ

µ∑
i=1

δ(s − αi ),

where δ(s) is the Dirac’s delta distribution. Indeed, considering either Df (s) or χf (T ) is equivalent because
the characteristic function is the Fourier transform of the distribution of Hodge spectral exponents, i.e.,

χf (T ) = F{Df (s)}(τ).

Considering the change of variables T = e2πiτ we treat the dependence ofχf on T and on τ interchangeably
throughout this paper.

Remark 1.1. Because of the symmetry of the Hodge spectrum, we are interested in the truncations

χ<1
f (T ) =

1

µ

∑
αi<1

Tαi , D<1
f (s) =

1

µ

∑
αi<1

δ(s − αi ).
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Definition 1.2. The continuous distribution function is Nn+1 : R → R defined as:

Nn+1(s) =

∫
x0+···+xn=s

1[0,1)(x0) · · · 1[0,1)(xn) dx0 ... dxn =
(
1[0,1) ∗ n+1... ∗ 1[0,1)

)
(s),

where 1[0,1)(s) is the indicator function and ∗ denotes the convolution product. One may check that the
Fourier transform of Nn+1(s) is

F{Nn+1(s)}(τ) =
(
T − 1

logT

)n+1

.

Definition 1.3. We define ϕf :
[
0, n+1

2

)
→ R as the cumulative difference function between Nn+1(s)

and Df (s), that is,

ϕf (r) =

∫ r

0
Nn+1(s)− Df (s) ds =

∫ r

0
Nn+1(s)−

1

µ

µ∑
i=1

δ(s − αi ) ds =

∫ r

0
Nn+1(s) ds −

1

µ
#{αi ⩽ r}.

Definition 1.4. We say that r ∈
[
0, n+1

2

)
is a dominating value if ϕf (r) > 0, or equivalently if

1

µ
#{αi ⩽ r} <

∫ r

0
Nn+1(s) ds.

K. Saito [4] introduced these notions of cumulative difference function and dominating values. Moreover
he formulated the following questions:

Question 1. For which limits of sequences of hypersurfaces (f (i))i⩾0 does the distribution of Hodge spectral
exponents Df (i)(s) converge to Nn+1(s)? Equivalently, for which limits of (f (i))i⩾0 does the characteristic

function χf (i)(T ) converge to F{Nn+1}(τ) =
(
T−1
logT

)n+1
?

Question 2. Given f , what is the set of all dominating values?

The limit of (f (i))i⩾0 in Question 1 has to be specified, since it is not clear a priori which kind of limit
one should consider. The few results we may find in the literature all consider different types of limits.
K. Saito already calculated the following two limits, both of which converge to Nn+1(s):

Proposition 1.5 ([4, (3.7)]). Let f ∈ C[x0, ... , xn] be a quasi-homogeneous polynomial of degree 1 with
respect to the weights r0, ... , rn, i.e., satisfying f (λ

r0x0, ... ,λ
rnxn) = λf (x0, ... , xn). Then, taking a sequence

of such functions with the limit ri → 0 for all i = 0, ... , n, one has

lim
r0,...,rn→0

χf (T ) =

(
T − 1

logT

)n+1

= F{Nn+1(s)}(τ).

Proposition 1.6 ([4, (3.9)]). Let f∈C{x ,y} be an irreducible plane curve with Puiseux pairs (n1,l1),...,(ng ,lg).
Then, taking a sequence of such functions with the limit ng → +∞ (keeping all other nj and lj fixed), one
has

lim
ng→+∞

χf (T ) =

(
T − 1

logT

)2

= F{N2(s)}(τ).

The Puiseux pairs are defined in Section 2.

More recently, Almirón and Schulze gave another example for which the distribution of Hodge spectral
exponents also converges to the continuous distribution Nn+1(s):
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Proposition 1.7 ([1]). Consider a fixed Newton diagram Γ. Let fω ∈ C{x0, ... , xn} be a Newton non-de-
generate function with Newton diagram ωΓ (the rescaling of Γ by a factor ω ∈ Q>0). Then, taking a
sequence of such functions with limit ω → +∞, one has

lim
ω→+∞

χfω
(T ) =

(
T − 1

logT

)n+1

= F{Nn+1(s)}(τ).

Regarding Question 2 on the set of dominating values, Tomari proved the following result which, in
terms of dominating values, states the following:

Theorem 1.8 ([9]). Let f ∈ C{x , y} be a plane curve. Then 1
2 is a dominating value, i.e.,

#

{
αi ⩽

1

2

}
<

µ

8
.

K. Saito asked whether 1
2 is a dominating value for any f ∈ C{x0, ... , xn}, that is, whether

#

{
αi ⩽

1

2

}
<

µ

(n + 1)! 2n+1
.

A conjecture posed by Durfee states:

Conjecture 1.9 ([3]). Let f ∈ C{x , y , z} be a surface with a singularity at the origin. Then

pg <
µ

6
.

Here, pg denotes the geometric genus of f defined as

pg = dimC(R
n−1π∗OX )0 for n ⩾ 2 (pg = dimC(π∗OX/OC2)0 for n = 1),

with π : X → Cn+1 being a resolution of the singularity. M. Saito [5] proved a relation between this invariant
and the Hodge spectral exponents, namely pg = #{i | αi ⩽ 1}, and thus Durfee’s conjecture predicts that
1 is a dominating value for n = 2. K. Saito asked whether one can generalize this statement:

Question 3. Is 1 a dominating value for all n ⩾ 2? That is, is it true that

pg = #{αi ⩽ 1} <
µ

(n + 1)!

for any f ∈ C{x0, ... , xn}?

The aim of this work is to study Questions 1 and 2 for the case of plane branches. Regarding Question 1
we calculate the limit distribution for the limits nk → +∞ and lk → +∞. Regarding Question 2, we give
a closed formula for #{αi ⩽ r} in Theorem 4.1 and ϕf (r) in Theorem 4.2 in terms of numerical invariants
of the plane branch. Thereby, we provide in Theorem 5.1 intervals of dominating values.
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2. Plane branch singularities

In this section we briefly present the necessary background on irreducible plane curves that we use in this
paper and we refer to Casas-Alvero’s book [2] for unexplained terminology.

Let f : (C2, 0) → (C, 0) be a germ of a holomorphic function, or equivalently a convergent power
series f ∈ C{x , y}. The equation f = 0 defines locally a (complex) plane curve around the origin. We
only consider irreducible plane curves f (also called plane branches), i.e., irreducible elements of the unique
factorization domain C{x , y}.

Theorem 2.1 (Puiseux). Let f ∈ C{x , y} define an irreducible plane curve that is not tangent to the y-axis
(i.e., ∂f

∂x ̸= 0). Then there is a Puiseux series s(x) =
∑

i⩾0 aix
i/m such that f (x , s(x)) = 0. Moreover,

all such series are conjugates σε(s) =
∑

i⩾0 aiε
ix i/m with εm = 1. The curve can be parameterized

by t 7→
(
tm,
∑

i⩾0 ai t
i
)
.

A Puiseux series of f has the form

s(x) =
∑
j∈(e0)
0⩽j<β1

ajx
j/m +

∑
j∈(e1)

β1⩽j<β2

ajx
j/m + · · ·+

∑
j∈(eg−1)

βg−1⩽j<βg

ajx
j/m +

∑
j∈(eg )
βg⩽j

ajx
j/m

with
e0 = m, βi = min{j | aj ̸= 0, j /∈ (ei−1)}, ei = gcd(ei−1,βi ) (i = 1, ... , g),

where m is chosen such that eg = 1. Since ei |ei−1, we can define ni = ei−1/ei ⩾ 2.

These numerical invariants have a geometric meaning: e0 is the multiplicity of f at the origin and ei
(i = 1, ... , g) is the multiplicity of f at the i-th rupture divisor of its minimal embedded resolution, or
equivalently the last infinitely near point of the i-th cluster of consecutive satellite points. These concepts
are explained in [2].

From the Puiseux series we can define:

Definition 2.2. The characteristic exponents of a plane branch f are the rational numbers
(β1
m , ... ,

βg

m

)
.

Following the notation of M. Saito [6] with a slight modification, let

βi
m

= 1 +
l1
n1

+ · · ·+ li
n1 · · · ni

(i = 1, ... , g)

with nj ⩾ 2, lj ⩾ 1, gcd(lj , nj) = 1. From this we define:

Definition 2.3. The Puiseux pairs of an irreducible plane curve f are (n1, l1), ... , (ng , lg ).

The characteristic exponents and the Puiseux pairs are two equivalent sets of complete topological
invariants of the singularity of f . That is: they determine, and are determined by, the homeomorphism class
of f −1(0) ∩ U for a small enough neighbourhood U of the origin.

Remark 2.4. The name Puiseux pairs appear in various slightly different ways in the literature. We based our
definition on the one given by M. Saito [6], who used this name for the pairs (k1, n1), ... , (kg , ng ) with k1 =
n1 + l1, ki = li . Casas-Alvero [2] used the similar term characteristic pairs to refer to (β1,m), ... , (βg ,m).
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M. Saito [6] considered the following numerical invariants in order to obtain a formula for the charac-
teristic function of the Hodge spectral exponents of an irreducible plane curve. We simplify the definition
by letting n0 = 1.

Definition 2.5. We define the following numerical invariants:

w0 = 1, wj = njnj−1wj−1 + lj (j = 1, ... , g),

µ0 = 0, µj = (nj − 1)(wj − 1) + njµj−1 (j = 1, ... , g).

Proposition 2.6 ([4]). The Milnor number of f is µ = µg . More generally, the Milnor number of a curve
with Puiseux pairs (n1, l1), ... , (nj , lj) is µj , for any j ∈ {1, ... , g}.

From these definitions we prove:

Lemma 2.7. The Milnor number of an irreducible plane curve with Puiseux pairs (n1, l1), ... , (ng , lg ) is

µ =

g∑
j=1

ljej(ej−1 − 1) + (e0 − 1)2.

Thành and Steenbrink [8] already described the Hodge spectrum of any plane curve in terms of its
topological invariants, but in this work we use a closed formula given by M. Saito:

Theorem 2.8 ([6, Theorem 1.5]). The Hodge spectral exponents in the interval (0, 1) are:
1

ej

(
b

nj
+

a

wj

)
+

c

ej

∣∣∣∣∣∣∣∣
0 < a < wj

0 < b < nj
0 ⩽ c < nj+1 · · · ng
1 ⩽ j ⩽ g

,
b

nj
+

a

wj
< 1

 .

Notice that this formula gives us a set of µ/2 Hodge spectral exponents and thus, by symmetry, it
characterizes all the Hodge spectral exponents of f .

To work with characteristic functions (i.e., Fourier transforms), M. Saito defined:

Definition 2.9. Let F (T ) =
∑

i⩾0 aiT
i/N ∈ C[T 1/N ]. Then, we define the following truncations:

F<1(T ) =
∑

i/N<1

aiT
i/N , F>1(T ) =

∑
i/N>1

aiT
i/N ,

which are the terms of F (T ) with exponents smaller and larger than 1 respectively.

Definition 2.10. We define the auxiliary functions Φj(T ) as:

Φ1(T ) =
T 1/w1 − T

1− T 1/w1

T 1/n1 − T

1− T 1/n1
,

Φj(T ) =
1− T

1− T 1/nj
Φ<1
j−1(T

1/nj ) + T 1−1/nj
1− T

1− T 1/nj
Φ>1
j−1(T

1/nj ) +
T 1/wj − T

1− T 1/wj

T 1/nj − T

1− T 1/nj

(for j = 2, ... , g).

Then, M. Saito proves the following theorem:

Theorem 2.11 ([6, Theorem 1.5]). The characteristic function of an irreducible plane curve f is

χf (T ) =
1

µg
Φg (T ).
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3. Limit distribution in the case of branches

In this section we study the case of plane branches for K. Saito’s Question 1 on the limit distribu-
tion of Hodge spectral exponents. We consider irreducible plane curves f ∈ C{x , y} with Puiseux pairs
(n1, l1), ... , (ng , lg ). In this case, K. Saito’s Question 1 asks for which limits of irreducible plane curves f
does the distribution of Hodge spectral exponents Df (s) converge to N2(s) (recall Definition 1.2). Equiv-
alently, it asks for which limits of the Puiseux pairs (n1, l1), ... , (ng , lg ) does the characteristic func-

tion χf (T ) = F{Df (s)}(τ) converge to the Fourier transform F{N2(s)}(τ) =
(
T−1
logT

)2
.

K. Saito computed the particular case of a limit where the invariant ng of the last Puiseux pair tends
to infinity while all the remaining Puiseux pairs are kept fixed. His result, recalling Proposition 1.6, is that
the resulting limit distribution of Hodge spectral exponents is

lim
ng→+∞

χf (T ) =

(
T − 1

logT

)2

= F{N2}(τ).

This is the expected limit distribution of Question 1. Given this result, we are led to ask whether it is
possible to generalize it for the following limits:

(i) nk → +∞ for a particular k ∈ {1, ... , g} while keeping all other nj and lj fixed,

(ii) lk → +∞ for a particular k ∈ {1, ... , g} while keeping all other nj and lj fixed.

For the first case we prove the following:

Theorem 3.1. Let g ∈ Z>0, k ∈ {1, ... , g}. Let f be an irreducible plane curve with Puiseux pairs
(n1, l1), ... , (ng , lg ). Consider a sequence of such curves f with nk → +∞, nj (j ̸= k) fixed and all lj fixed.
Then, the limit of the characteristic function is

lim
nk→+∞

χf (T ) =

(
T − 1

logT

)2

.

Equivalently, the limit of the distribution of Hodge spectral exponents is

lim
nk→+∞

Df (s) = N2(s).

The preceding theorem states that sequences of irreducible plane curves with nk → +∞ (with the other
numerical invariants fixed) form a family of solutions to K. Saito’s Question 1 on the limit distribution of
Hodge spectral exponents.

On the other hand, we prove:

Theorem 3.2. Let g ∈ Z>0, k ∈ {1, ... , g}. Let f be an irreducible plane curve with Puiseux pairs
(n1, l1), ... , (ng , lg ). Consider a sequence of such curves f with lk → +∞, lj (j ̸= k) fixed and all nj fixed.
Then, the limit of the characteristic function is

lim
lk→+∞

χf (T ) =
1

ek−1 − 1

T − 1

logT

T 1/ek−1 − T

1− T 1/ek−1
.

Equivalently, the limit of the distribution of Hodge spectral exponents is

lim
lk→+∞

Df (s) =
1

ek−1 − 1
(⌊ek−1s⌋ 1[0,1)(s) + ⌊ek−1(2− s)⌋ 1[1,2)(s)),

where 1[a,b)(s) denotes the indicator function of the interval [a, b).
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These limits are different from
(
T−1
logT

)2
and N2(s) respectively. Therefore, this theorem says that

sequences of irreducible plane curves with lk → +∞ (with the other numerical invariants fixed) are a
family of non-solutions to K. Saito’s Question 1 on the limit distribution of Hodge spectral exponents.

4. Cumulative difference function ϕf

From Definition 1.3 we have that the cumulative difference function for the case of plane curves is ϕf : [0,1)→
R defined as

ϕf (r) =

∫ r

0
N2(s)− Df (s) ds =

∫ r

0
N2(s)−

1

µ

µ∑
i=1

δ(s − αi ) ds =
1

2
r2 − 1

µ
#{αi ⩽ r}

since we have N2(s) = s in the interval [0, 1).The Hodge spectral exponents αi are given by Theorem 2.8.

To be able to study the set of dominating values (i.e., K. Saito’s Question 2) we need a more explicit
expression for #{αi ⩽ r} or equivalently ϕf (r). For this purpose we prove the following:

Theorem 4.1. Let f be an irreducible plane curve with Puiseux pairs (n1, l1), ... , (ng , lg ). Then, for any r ∈
[0, 1), the number of Hodge spectral exponents less or equal to r is given by the following expression:

#{αi ⩽ r} =
µg − ngwg

2
r +

ngwg

2
r2 +

g∑
j=1

nj − 1

2
{ej r}+

1

2
{e0r}(1− {e0r})

+

g∑
j=1

lj
2nj

{ej−1r}(1− {ej−1r})−
g∑

j=1

nj−1∑
b=1

{
wj

(
{ej r} −

b

nj

)}
1[ b

nj
,1
)({ej r}).

Theorem 4.2. Let f be an irreducible plane curve with Puiseux pairs (n1, l1), ... , (ng , lg ). Then, for any r ∈
[0, 1), the cumulative difference function between N2(s) and Df (s) is given by the following expression:

ϕf (r) =
1

2µ

(2e0 − 1 +

g∑
j=1

ljej

)
r(1− r)−

g∑
j=1

(nj − 1){ej r} − {e0r}(1− {e0r})

−
g∑

j=1

lj
nj
{ej−1r}(1− {ej−1r}) +

g∑
j=1

nj−1∑
b=1

2

{
wj

(
{ej r} −

b

nj

)}
1[ b

nj
,1
)({ej r})

 .

5. Dominating values for irreducible plane curves

In this section we give partial answers to K. Saito’s Question 2 on the dominating values for the case
of irreducible plane curves. To such purpose we use Theorem 4.2, which gives us an explicit expression
for the cumulative difference function ϕf (s). This expression can be used to find simpler functions which
bound ϕf (s), thus making it possible to obtain intervals where ϕf is positive. We prove the following result:
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Theorem 5.1. Let f be an irreducible plane curve with Puiseux pairs (n1, l1), ... , (ng , lg ). Then,

(i) A set of dominating values is given by the interval

r ∈

((
2e0 − ng +

∑g
j=1 ljej

)
−
√
D1

2
(
2e0 − 1 +

∑g
j=1 ljej

) ,

(
2e0 − ng +

∑g
j=1 ljej

)
+
√
D1

2
(
2e0 − 1 +

∑g
j=1 ljej

) )
with

D1 =

(
2e0 − ng +

g∑
j=1

ljej

)2

− 4

(
2e0 − 1 +

g∑
j=1

ljej

)(
g−1∑
j=1

(nj − 1) +
1

4
+

g∑
j=1

lj
4nj

)
> 0.

(ii) A set of dominating values is given by the interval

r ∈

((
e0 +

∑g
j=1 ljej

)
−
√
D2

2
(
2e0 − 1 +

∑g
j=1 ljej

) , (e0 +∑g
j=1 ljej

)
+
√
D2

2
(
2e0 − 1 +

∑g
j=1 ljej

) )
with

D2 =

(
e0 +

g∑
j=1

ljej

)2

− 4

(
2e0 − 1 +

g∑
j=1

ljej

)(
1

4
+

g∑
j=1

lj
4nj

)
> 0.

(iii) We have that the leftmost interval of (0, 1)

r ∈ (0, lct(f )) =

(
0,

1

e1

(
1

n1
+

1

n1 + l1

))
is a set of dominating values. In contrast, ϕf (r) < 0 for the rightmost interval

r ∈
[
1− 1

ngwg
, 1

)
.

We point out that the first two intervals always intersect but it is not always clear which are the ends of
the unique interval of dominating values they provide. The intervals of the third item are obtained directly
from the smallest and largest Hodge spectral exponents.

Remark 5.2. Almirón and Schulze [1, Proposition 6] proved that the log-canonical threshold of an irreducible
plane curve is a dominating value except for the cases where the curve has semigroup (2, 3) or (2, 5).

In the course of the proof of Theorem 5.1 we also obtain an alternative proof of Theorem 1.8 by
Tomari [9] but only for irreducible curves.
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his master thesis, from which this article is a summary. The author gratefully acknowledges Secretaria
d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya and
Fons Social Europeu Plus for the financial support of his FI Joan Oró (2024 FI-1 00585) predoctoral grant.
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Salim Boukfal Lazaar
An introduction to stochastic integration
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SCM Master Thesis Day

On October 4, with a large attendance, we celebrated the second SCM TFM Day. This activity, organized
by the Catalan Mathematical Society (SCM), aims to provide recent graduates from a master’s program
in mathematics at a Catalan university or within the common linguistic area (Xarxa Vives) the opportu-
nity to present their Final Master’s Thesis. This inter-university event offers young graduates a platform
to participate in their first workshop presentation, fostering connections within the community of early-
career mathematicians as they embark on research. It also serves to inform participants about the Galois
Awards, the journal Reports@SCM, and the master’s programs in mathematics at universities in the Vives
Network—information which is particularly relevant to mathematics students in their final year who attend
the event.

The event was held at the headquarters of the Institut d’Estudis Catalans and featured eight students
as speakers, along with presentations by the two students who won the Evariste Galois 2024 Prize:
Pablo Nicolás (winner) and Roger Gómez (recipient). This award, given by the SCM for the best final
master’s thesis of the previous year (in this case, 2023), highlights outstanding research achievements.
Notably, the two winners of the 2024 Galois Award had presented their TFM at the 2023 SCM TFM Day.

The scientific and organizing committee for the event included Montserrat Alsina (President of the SCM),
Josep Vives (Vice-President of the SCM), Ainoa Murillo (SCM board member), Simone Marchesi (Editor
of Reports@SCM), Xavier Massaneda (Coordinator of the Master of Advanced Mathematics UB-UAB),
Jordi Saludes (Coordinator of the UPC Master’s in Advanced Mathematics), Enric Cosme and Pablo Sevilla
(Coordinators of the University Master’s in Mathematical Research UV-UPV), along with Pablo Nicolás,
Philip Pita, and Sergi Sánchez, current PhD students and participants in the 2023 edition.

This issue of Reports@SCM includes extended abstracts of the ten presentations given during the event.

https://reportsascm.iec.cat88
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Resum (CAT)
L’objectiu d’aquest treball és el d’estudiar integrals estocàstiques que no són ne-
cessàriament respecte del moviment brownià.
Primer de tot es revisa la construcció d’aquesta darrera integral per motivar les
possibles extensions a altres integradors com són les martingales.
A continuació, estudiem les integrals respecte de camps aleatoris, on comencem
per estudiar aquestes integrals respecte del soroll blanc gaussià per, un cop més,
estendre la classe d’integradors.

Alhora que es van estudiant aquests objectes, també presentem alguns resultats

referents a l’aproximació en llei d’aquests.

Keywords: Brownian motion, Gaussian process, white noise, martingale,
stochastic integral, convergence in law.
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An introduction to
stochastic integration

Abstract

The main purpose of this work is to continue and extend the study of the stochastic integral with respect to
the Brownian motion usually seen in courses of Stochastic Calculus, providing (hopefully) an introductory
text that will allow the average student of the subject (and to anyone who is already familiar with the
previously mentioned stochastic integral) to expand his knowledge.

To do so, we briefly review the construction of the Itô integral with respect to the Brownian motion and
notice that it turns out that very few features of this particular process are used, which allows us to exploit
these ideas to generalize the construction to other processes (mainly, martingales), this is done following
the construction provided in the third chapter of [2].

We then discuss the topic of stochastic integration with respect to random fields. We first treat the
integral with respect to the space-time Gaussian white noise, following the construction presented in the
first two chapters of [1], since it deals with objects which might be a bit more familiar to the intended
audience as its construction uses the already studied Itô integral with respect to the Brownian motion and
Parseval’s identity. Before doing so, we introduce two crucial Gaussian processes (the isonormal process
and the white noise), which generalize the Brownian motion and are crucial when it comes to define the
stochastic integral with respect to the space-time white noise.

Next, and following the second chapter of [3], we introduce a wider class of random fields (which
contains the ones already seen) that can be used as integrators and show how one constructs integrals
with respect to such objects. During this process, we use the already studied Gaussian white noise as a
canonical example that will serve us as a model to compare the new construction.



An introduction to stochastic integration

Finally, and as we study these objects, we address the problem of how the integrals with respect to the
Brownian motion and with respect to the space-time Gaussian white noise can be approximated in law by
integrals with respect to random walks. The results obtained, which are motivated by the already known
invariance principles like the Donsker’s one, can be seen as generalizations of these since the latter can be
obtained as a particular case of the former.
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Resum (CAT)
En aquest treball s’estudien les equacions diferencials estocàstiques (EDEs) dirigi-

des per un moviment brownià fraccionari (fBm) amb paràmetre de Hurst H > 1/2.

Es defineix la integral estocàstica respecte al fBm i es demostra l’existència i

unicitat de solucions. També s’introdueix el càlcul de Malliavin en el context

del fBm, i es prova que, amb condicions més fortes en els coeficients, la llei de la

solució és absolutament cont́ınua. Finalment, es donen fites d’estil gaussià per la

densitat d’una faḿılia d’EDEs.

Keywords: fractional Brownian motion, stochastic differential equations,
Malliavin calculus.
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Stochastic differential equations driven
by a fractional Brownian motion

Abstract

In the thesis, we study from several points of view the so-called stochastic differential equations driven by
a fractional Brownian motion with Hurst index H > 1/2. These objects are differential equations of the
form

Xt = X0 +

∫ t

0
σ(s,Xs) dB

H
s +

∫ t

0
b(s,Xs) ds, t ∈ [0,T ], (1)

where BH is a fractional Brownian motion with H ∈ (1/2, 1), that is, a centered stochastic Gaussian
process with covariance function

RH(t, s) := E (BH
t BH

s ) =
t2H + s2H − |t − s|2H

2
.

Notice that, in particular, when H = 1/2 then BH is a standard Brownian motion. The first topic covered
in the thesis is giving sense to an equation like (1). The fact that BH is not a semimartingale makes
it impossible to define the integral with respect to BH in a similar way as it is defined for the standard
Brownian motion. In virtue of the results of Young in [4] and the further contributions of Zähle in [5], we
are able to define the integral with respect to BH in the generalized Stieltjes sense. Once the stochastic
integral is well-defined, we follow closely the arguments of Nualart and Răşcanu in [2] to prove the existence
and uniqueness of solutions to a general SDE of the form (1).

Once we know we can talk about the solution to equation (1), then we want to study such solution from
a probabilistic point of view. Using the Malliavin calculus (that is, the stochastic calculus of variations)



Stochastic differential equations driven by a fractional Brownian motion

we get to prove that under stronger hypothesis on the coefficients σ and b, the law of Xt is absolutely
continuous with respect to the Lebesgue measure, so for each t ∈ [0,T ] Xt has a density function pt(x). In
order to prove this result, we use the concepts of Malliavin differentiability in the fractional Brownian motion
framework and Fréchet differentiability and we use the same techniques as in Nualart and Saussereau in [3].

Finally, using more sophisticated Malliavin calculus techniques and the method of Nourdin–Viens in [1]
we are able to proof that the solution Xt to an equation of the type

Xt = x0 +

∫ t

0
σs dB

H
s +

∫ t

0
b(s,Xs) ds, (2)

where σ is deterministic, σ and b satisfy the same hypothesis as for the existence of the density functi-
on pt(x) and we assume further that there exist 0 < λ < Λ such that λ < σs < Λ, then the density pt(x)
for t ∈ (0,T ] is bounded in the following way:

E (|Xt −mt |)
2Λ2t2H

exp

(
−(x −mt)

2

2λ2t2H

)
≤ pt(x) ≤

E (|Xt −mt |)
2λ2t2H

exp

(
−(x −mt)

2

2Λ2t2H

)
,

where mt = E (Xt).
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connected with Stieltjes integration, Acta Math.
67(1) (1936), 251–282.

[5] M. Zähle, Integration with respect to fractal
functions and stochastic calculus. I, Probab.
Theory Related Fields 111(3) (1998), 333–374.

https://reportsascm.iec.cat92



Extended Abstracts

AN ELECTRONIC JOURNAL OF THE

SOCIETAT CATALANA DE MATEMÀTIQUES

Joan Domingo Pasarin
Universitat de Barcelona
jdomingopasarin@ub.edu

Resum (CAT)
En aquest treball estudiem la regularitat de les fronteres lliures Lipschitz en el

problema d’Alt–Caffarelli. Demostrem que les fronteres lliures Lipschitz són C 1,α

mitjançant la invariància per reescalament del problema i la regularitat inicial

Lipschitz de la frontera. A més a més, també provem que les fronteres C 1,α

són C∞, cosa que, juntament amb el resultat anterior, implica que les fronteres

lliures Lipschitz són C∞.

Keywords: partial differential equations, free boundary problems, Alt–
Caffarelli problem, Lipschitz regularity.
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Regularity of Lipschitz free boundaries
in the Alt–Caffarelli problem

Abstract

Free boundary problems are a subclass of PDEs in which not only do we have to solve a particular PDE,
but we also have to find an unknown domain Ω where our solution solves the problem. More precisely,
we have a fixed (smooth) domain D and we want to find a pair (Ω, u) such that Ω ⊂ D is a domain and
u : Ω → R is a solution in Ω of the PDE in question. The term free boundary refers to ∂Ω ∩ D, that is,
the piece of the boundary of Ω that falls inside D. The word free signifies the fact that the free boundary
depends on our solution and will change as soon as our solution does so.

Motivated by its relevance in fields such as fluid mechanics, optimal design problems and electrostatics,
the Alt–Caffarelli problem (sometimes also called the one-phase problem or the Bernoulli problem) is a
classical example of a free boundary problem. Studied for the first time in [1], this problem consists in
finding a nonnegative function u defined in B1 = B1(0) solving

{
∆u = 0 in {u > 0} ∩ B1,

∂νu = 1 on ∂{u > 0} ∩ B1.
(1)

In the general notation used previously, our fixed domain is D = B1, Ω = {u > 0}, and the free boundary
is ∂{u > 0} ∩ B1. Observe that in (1) we are imposing two boundary conditions on the free boundary:
u = 0 (implicitly) and ∂νu = 1. This type of problem will not have a solution in general since it constitutes
an overdetermined PDE problem. However, if the problem can be solved (which is the case for the Alt–
Caffarelli problem), then we may expect to prove extra properties of the free boundary ∂{u > 0} ∩ B1

thanks to the overdetermination of the problem.
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In this work we study the Lipschitz regularity of the free boundary ∂{u > 0} ∩ B1. More precisely, we
assume the free boundary to be Lipschitz and then show how to improve its regularity by exploiting the
overdetermined nature of the problem. The main result we focus on is the following one:

Theorem. Let u be a (viscosity) solution of the Alt–Caffarelli problem (1). Assume that the free boun-
dary ∂{u > 0} ∩ B1 is Lipschitz. Then ∂{u > 0} ∩ U is smooth for any open set U ⋐ B1. Moreover,
u ∈ C∞({u > 0} ∩ U) and u solves (1) in the classical sense in U.

The proof of this theorem is accomplished in two steps: first, by proving that Lipschitz free boundaries
are C 1,α, and second, by showing that C 1,α free boundaries are smooth. For the first step, the main
idea is to use the rescaling invariance of (1). Notice that if u is a solution, then for any r > 0 the
function ur (x) = 1

r u(rx) is also a solution in the corresponding rescaled domain B1/r . This property is
crucial to finish this first step. Geometrically, the Lipschitz regularity of ∂{u > 0}∩B1 implies that the free
boundary always remains outside a cone of a fixed opening. Using that our solution satisfies (1), we are
able to show that we can improve the opening of this cone in the ball B1/2. However, this alone is clearly
insufficient to conclude that the free boundary is C 1,α. What enables us to complete the proof of this first
step is precisely the rescaling invariance of the problem, which we use to repeat the opening improvement
iteratively in the sequence of balls B2−k . Intuitively, this process tells us that the free boundary “flattens”
as we zoom in at the origin which implies, after some extra steps, that the free boundary is C 1,α.

As for the second step, we perform some computations combined with Schauder estimates for the
Laplacian to show that once we have C 1,α regularity on the free boundary, then we can improve the
boundary as much as we want to obtain C∞ regularity. Lastly, combining both steps and using a simple
covering argument we obtain the proof of the theorem.
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Resum (CAT)
Estudiem propietats espectrals dels models de bossa de l’MIT generalitzats.

Aquests són operadors de Dirac {Hτ}τ∈R actuant en dominis de R3 amb

condicions de frontera que generen confinament. El seu autovalor positiu més baix

és d’especial interès, i s’ha conjecturat que és ḿınim per a una bola entre tots els

dominis amb volum fixat. La conjectura anàloga és certa per al laplacià de Dirichlet

(és la desigualtat de Faber–Krahn), que sorgeix en els ĺımits τ → ±∞. Estudiant

la convergència en el sentit de la resolvent dels operadors Hτ cap als operadors

ĺımit H±∞ quan τ → ±∞, provem que certes propietats espectrals s’hereden al

llarg de la parametrització. Aquests resultats són nous i s’han publicat a [3].

Keywords: Dirac operator, spectral theory, MIT bag model, shape opti-
mization, resolvent convergence.

95https://reportsascm.iec.cat Reports@SCM 9 (2024), 95–96.

Spectral gap of generalized
MIT bag models

Abstract

The equation that governs all relativistic quantum processes is called Dirac equation. In R3, it is a complex
valued system of four linear PDEs of first order in time and space variables. For a spin-1/2 free particle of
mass m, one can write the Dirac equation in matricial form as i ∂

∂tψ(x , t) = (−iα · ∇+mβ)ψ(x , t), where
α and β are the so-called Dirac matrices, given —essentially— by the more known Pauli matrices. The
stationary eigenvalue problem associated to the Dirac equation is of the form

{
(−iα · ∇+mβ)φ = λφ in Ω,

Boundary conditions on ∂Ω,

where Ω ⊆ R3 is the domain where the particle evolves, φ : Ω → C4, and the boundary conditions typically
depend on physical constraints. The eigenvalues λ of such Dirac operators provide relevant information to
understand the evolution of the system, and hence their study is of special interest.

Dirac operators acting on domains Ω ⊂ R3 are used in relativistic quantum mechanics to describe
particles that are confined in a box. The so-called MIT bag model is a very remarkable example, which was
introduced in the 1970s as a simplified model to study confinement of quarks in hadrons.

In [1] it is introduced a family {Hτ}τ∈R of Dirac operators with confining boundary conditions param-
eterized by τ ∈ R; the particular case τ = 0 corresponds to the MIT bag model. Because of this reason,
the operators Hτ are called generalized MIT bag models.



Spectral gap of generalized MIT bag models

In this work [2], we study some spectral properties of generalized MIT bag models. Their lowest positive
eigenvalue is of special interest, and it is conjectured to be minimal for a ball among all domains of the same
volume. The analogous conjecture holds true for the Dirichlet Laplacian (it is the Faber–Krahn inequality).

We prove that the Dirichlet Laplacian arises in the limit τ → ±∞ by studying the resolvent convergence
of Hτ in this limit. More specifically, we show strong resolvent convergence of Hτ to H±∞, and we justify
that one cannot improve this to norm resolvent convergence. These results are new and have been published
in [3], together with other extended results.

Because of this convergence, we show that some spectral properties of the limiting operators H±∞ are
inherited throughout the parameterization. As a consequence, we verify the conjecture for large enough
values of the parameter τ .

Finally, we prove that the conjecture holds true for corona domains of relatively small hole. This result is
also new. However, a continuation of this study after the master’s thesis —using more abstract arguments—
allowed to complete this result for any corona of the same volume (independently of the size of its hole).
This extended result will be sent for publication in an indexed journal.
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Resum (CAT)
L’objectiu principal d’aquest projecte és desenvolupar un marc teòric unificat de la

propriocepció, el control motor i la presa de decisions. Primerament, es presenta

una introducció al càlcul variacional i la teoria del control òptim per establir una

base teòrica sòlida. A continuació, es proposa un sistema dinàmic lineal com a

aproximació al sistema f́ısic estudiat i es desenvolupa un model seqüencial per

predir trajectòries. Davant la dificultat de trobar una solució anaĺıtica exacta,

s’utilitza el filtre de Kalman per estimar els perfils de posició i velocitat.

Keywords: motor control, decision-making, proprioception, optimal feed-
back control (OFC).
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Unifying framework for decision-making
dynamics: optimal control and
infinite horizon perspectives

Abstract

Movement is the only way to express our thoughts and moods, which in its full expression determines
our overall behaviour. A vast amount of research has been devoted to study how the brain generates and
controls movement over the last century. Furthermore, the study of the principles underlying how the brain
generates movement are of significant relevance both from a scientific but also clinical perspective, as most
disorders are often quantified in terms of the motor deficits they imply, e.g., Parkinson’s disease, ictus or
simple ageing.

Recent studies have described the generation and control of movements in terms of the benefits and
costs associated with potential movements [7], thus establishing a fundamental relationship between mo-
vement generation and decision-making theory. The combination of movement related choices and more
cognitive decisions determines our responses and the behaviour with which we interact with the envi-
ronment. This can be studied and modelled mathematically through optimal decision making and motor
control theory [8]. However, these theories fall short to consider the contribution and role of the inner
perception of our body, namely the bodily perception or proprioception, which plays a crucial role when
planning and executing movements. In particular, proprioception provides internal corroboration that a
movement is ongoing, it is hence a distributed phenomenon implicated in processes of top-down prediction
and bottom-up correction.

Despite its obvious practical and clinical importance, proprioception remains one of the least studied
senses, often overshadowed by its more familiar counterparts. Consequently, the central purpose of this
project is to present a unified theory that, unlike simpler models of motor control, encompasses the explicit
incorporation of neural signatures of proprioception into a comprehensive model. The proposed model may
be able to describe the interactions between proprioception and its influence on motor control.
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For this purpose, on the first chapter, an introduction to the state of the art theories and recent work
on the principles of optimal feedback control (OFC) and movement related choices is presented, as stated
by experts of the field, [6, 8], to fully contextualize the problem.

On the second chapter, robust theoretical formulation on optimal control framework is presented in
order to provide a solid mathematical background as a means to understand the dynamical system studied
as an Infinite horizon optimal control problem, [2, 3, 5].

The experimental approach followed on this project is based on planar reaching movements, as described
on previous studies [4]. On Chapter 3, an introduction to time series theory is presented to understand the
data analysis conducted over the experimental distributions gathered, since they are given by time series to
apply the optimal feedback control approach as described by the Kalman filter, [1]. On Chapter 4, a more
detailed insight to the experimental configuration is stated, concerning the explicit development of the
dynamical system studied, as proposed by [6, 7]. Following the theoretical framework built in the previous
chapters, the sequential computational approach implemented is stated on Chapter 5.

Finally, the results obtained from implementing the OFC model are stated in Chapter 6, as well as an
exhaustive comparison and analysis between the experimental and simulated distributions.
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Resum (CAT)
Estudiem l’espai de mòduls de branques planes (per equivalència anaĺıtica) amb un

únic exponent caracteŕıstic mitjançant una estratificació utilitzant el semigrup

de valors de l’ideal jacobià de la branca. En particular, estudiem com abordar el

problema mitjançant diferents tècniques. En primer lloc, proporcionem un pro-

cediment algoŕıtmic basat en un procediment de Casas-Alvero, que, sota alguns su-

pòsits, descriu els estrats. Incloem una implementació en Maple d’aquest algoris-

me. A més, comparem la nostra estratificació amb una altra estudiada prèviament

per Peraire l’any 1998 a partir de l’invariant de Zariski. Això ens permet fer algunes

reflexions sobre els reptes de calcular la dimensió dels nostres estrats, que refinen

els estrats de Peraire, i presentar algunes noves eines per abordar el problema.

Keywords: analytic classification, stratification, Jacobian ideal.
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Moduli of plane branches with
a single characteristic exponent

Abstract

The moduli problem of classifying by analytical equivalence germs of irreducible curves in the same equi-
singularity class was first introduced by Oscar Zariski, [3], who gave a partial description of the space and
worked out some examples. The difficulty of the problem soon became apparent and many open questions,
that remain still open, arose. Our goal is to study the moduli problem for plane branches with a single
characteristic exponent and describe a stratification using the semigroup of values of the Jacobian ideal of
the branch, denoted by Θ. This stratification refines a previously known one based on the Zariski invariant
studied by Rosa Peraire in 1998, [2].

The germs

γA,σ : fA,σ = yn − xm + xpyq +
∑

ni+mj>nm+σ

0≤i≤m−2
0≤j≤n−2

Ai ,jx
iy j = 0, Ai ,j ∈ C,

where we denote by σ the integer np + mq − nm and by A the coefficients Ai ,j , represent all analytic
types of germs with a single characteristic exponent equal to m/n, (n,m) = 1, and Zariski invariant equal
to σ. Casas-Alvero in [1] describes a procedure that obtains for a given f (A, x , y) ∈ C(A){x , y}, as in
the previous equation with fixed Zariski invariant σ, the semigroup of values of the Jacobian ideal of the
branch γA according to a set of conditions on the Ai ,j . These conditions describe the strata that correspond
to the Zariski invariant σ of the stratification of the moduli space using the semimodule of values of the
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Jacobian ideal of a branch. One of our main contributions is developing this procedure into an algorithm
and implementing it in Maple. The implementation of this procedure also lead us to the construction of an
interesting tree, the tree of conditions for the Jacobian values of a fixed single characteristic exponent m/n.
A rooted tree structure in which the leaves represent all the possible semigroups of values of the Jacobian
ideal of γA and the nodes represent the conditions that the set of coefficients must satisfy in each of the
cases.

From our algorithm we are able to deduce a semi-reduced and a reduced equation describing of all the
branches in any fixed stratum with fixed set of Jacobian values Θ, and as a by-product the dimension of
that stratum. Given any stratification, a general equation fA,σ of a stratum (representing all its analytic
types) is semi-reduced if the only non-null coefficients Ai ,j are those whose variation results in a change
in the analytical type of the branch γA,σ. A reduced equation of a stratum is a semi-reduced equation
expressed in terms of a minimal number of Ai ,j . These Ai ,j in a reduced equation provide a parametrization
of the stratum, and its cardinal is precisely the dimension of that stratum.

Peraire in her Theorem 4.12 of [2] gives a combinatorial expression for the dimension of the strata of
her stratification by the Zariski invariant. We generalize her result and prove that an analogous expression
accounts for the number of non-null coefficients Ai ,j in a semi-reduced equation. Furthermore, we prove
that for her strata, any semi-reduced equation is, in fact, reduced, which does not hold in general for
our strata. We reveal that this presents the main difficulty in providing a combinatorial expression for the
dimension of the strata in our stratification by the set of Jacobian values Θ. Finally we introduce the notion
of Θ-continuous coefficients, which we believe is strongly related to this dimension.
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Resum (CAT)
Un cos de nombres K és monogen si el seu anell d’enters està generat per un

sol element com a Z-àlgebra. En el cas cúbic, determinar si K és monogen o no

és equivalent a resoldre l’equació diofàntica |IK (X ,Y )| = 1 sobre Z, on IK és la

forma ı́ndex del cos. Una solució entera determina un punt racional a la corba de

gènere 1 IK (X ,Y ) = Z 3. Mitjançant aquesta construcció, es pot demostrar que

K determina una F3-òrbita en H1(Q,E [3]), on E és la corba el.ĺıptica definida

per Y 2 = 4X 3 + Disc(K ). Donem la construcció expĺıcita d’aquesta òrbita pel cas

de cossos cúbics purs i caracteritzem la suma de cocicles associats a cossos no

isomorfs.

Keywords: monogenity, diophantine equations, elliptic curves, Galois
cohomology.
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Geometric methods
in monogenic extensions

Abstract

It is well known, due to the primitive element theorem, that any number field K is generated by a single
algebraic number over Q. One would think that the analogous statement should hold for the ring of
integers OK , so that OK = Z[α] for some algebraic integer α ∈ OK . However, Dedekind found the first
counterexample for this assumption in 1878 (see [2]). When there exists such α, K is said to be monogenic.
Today, for n ≥ 3, it is expected that, when ordered by discriminant, the set of monogenic number fields of
degree n has measure 0 (see [1]).

After choosing a suitable integral basis of OK , we can associate a degree n(n − 1)/2 homogeneous
form IK on n−1 variables to K called the index form of K . This form allows to characterize the monogenity
of K by a diophantine equation: K is monogenic if, and only if, there exist x1, ... , xn−1 ∈ Z such that
IK (x1, ... , xn−1) = ±1. When n = 3, IK is a binary cubic homogeneous form and its discriminant is equal
to the discriminant of K (see [3]). Thus, the projective curve CK : IK (X ,Y ) = Z 3 is smooth and an
integral solution to the index form equation gives rise to a rational point on CK . Therefore, we focus on
studying the existence of rational points on CK .

For non-zero r ∈ Q, let E r denote the elliptic curve given by Y 2 = 4X 3 + r . Let D = Disc(K ). In
recent work of Alpöge, Bhargava, and Shnidman (see [1]), they defined a rational map πK : CK → E−27D

and a 3-isogeny ϕD : ED → E−27D such that (CK ,πK ) is a ϕD-covering of E−27D . As a consequen-
ce, CK is a homogeneous space for ED . The ϕD-coverings of E

−27D are parametrized by H1(Q,ED [ϕD ]),
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where ED [ϕD ] = ker(ϕD), and homogeneous spaces for ED are parametrized by the Weil–Châtelet
group H1(Q,ED), whose trivial class consists of the homogeneous spaces for ED which have a rational
point. These cohomology groups are related by the Kummer exact sequence

E−27D(Q) −→ H1(Q,ED [ϕD ])
ι−→ H1(Q,ED),

where ι is given, in terms of ϕD-coverings and homogeneous spaces, by ι(CK ,πK ) = CK . Thus, (CK ,πK )
is in the kernel of ι if, and only if, CK has a rational point. Therefore, by analysing this kernel, we can
study the monogenity of families of number fields with discriminant D. We apply this theory in order to
give bounds for the total number of monogenic cubic number fields with the same discriminant in terms
of ED .

Since (CK ,πK ) is a ϕD-covering, it determines a class αK ∈ H1(Q,ED [ϕD ]). When K is a Dedekind
type I field, i.e. when K = Q(

3
√
hk2), where h, k are coprime, square-free integers such that hk2 ̸≡ ±1

modulo 9, we prove that the cocycle

ξK : σ 7−→ logω

(
σ(

3
√
hk2)

3
√
hk2

)
(0 :

√
D : 1)

is a representative of αK , where ω is a third root of unity. Using this expression, given Dedekind type I
fields K1 and K2 with the same discriminant, we find an expression for the ϕD-covering associated to ξK1 +
ξK2 , determining also when this covering corresponds to a Dedekind type I field.
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Resum (CAT)
Els algoritmes de cerca d’arrels han estat històricament utilitzats per resoldre

numèricament equacions no lineals de la forma f (x) = 0. Aquest treball explora

la dinàmica dels mètodes de la faḿılia Traub parametritzada Tp,δ aplicada a

polinomis. Aquests mètodes inclouen un ventall des del mètode de Newton (δ = 0)

fins al mètode de Traub (δ = 1). El nostre enfocament rau a investigar diverses

propietats topològiques de les conques d’atracció, particularment la seva simple

connectivitat i la no acotació, que són crucials per identificar un conjunt universal

de condicions inicials que assegurin la convergència a totes les arrels de p.

Keywords: dynamical systems, root-finding algorithms, Newton’s method,
Traub’s method.
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On the basins of attraction
of root-finding algorithms

Abstract

Solving nonlinear equations of the form f (x) = 0 is a common challenge in various scientific fields, span-
ning from biology to engineering. When algebraic manipulation is not feasible, iterative methods become
necessary to determine solutions. Newton’s method is a well-known approach, derived from linearizing the
equation f (x) = 0. Its iterative expression is given by:

xn+1 = xn −
f (xn)

f ′(xn)
, n ≥ 0.

Over the past few decades, numerous researchers have suggested various iterative approaches aimed at
enhancing Newton’s method [4]. One prevalent strategy for devising new methods involves directly combi-
ning existing techniques and subsequently modifying them to minimize the count of functional evaluations.
For example, if we apply Newton’s method twice while keeping the derivative constant in the second step,
we derive Traub’s method [5]. A specific type of root-finding algorithms, called the damped Traub’s family,
was first introduced in the papers [2, 6]. Its iterative expression is given by:

xn+1 = yn − δ
f (yn)

f ′(xn)
, n ≥ 0,

where yn = xn − f (xn)
f ′(xn)

is a Newton’s step and δ is the damping parameter. Notice that δ = 0 corresponds
to Newton’s method and δ = 1 to Traub’s method. Newton’s method converges quadratically for simple
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roots of a polynomial when the initial guess is sufficiently close to the desired root. On the other hand,
Traub’s method exhibits cubic (local) convergence. It is worth noting that each iteration of Traub’s method
requires more computations compared to Newton’s method.

The challenge of iterative methods lies in the choice of initial conditions to start the algorithm. The
study of dynamical systems plays a crucial role in gaining insight into how to make this selection effectively.
An example of this is presented in [3], where a universal and explicit set of initial conditions, denoted by Sd ,
is constructed. This set depends solely on the degree of the polynomial and can be used to find all the
roots of a polynomial using Newton’s method. The existence of this set is ensured by the fact that the
immediate basins of attraction for the method are simply connected and unbounded sets.

The aim of this work is to construct a set analogous to Sd for Traub’s method. If successful, this would
offer a way to find all the roots of a polynomial with enhanced convergence speed. To achieve this, it is
necessary to prove that the immediate basins of attraction for Traub’s method are simply connected and
unbounded sets. This would provide the essential framework for constructing a set similar to Sd . A recent
study [1] demonstrated this result under the assumptions that the polynomial is either of degree 2, or it
can be expressed in the form pn,β(z) := zn − β, where n ≥ 3 and β ∈ C.

We contributed to this research by analyzing the behavior of the damped Traub’s family when the
damping factor is close enough to zero by considering the method as a singular perturbation. We have
been successful in proving the unbounded nature of the immediate basins of attractions for this case.
Furthermore, we focus on investigating the simple connectivity and unboundedness of the immediate basins
of attractions specifically for third-degree polynomials, achieving some findings concerning the distribution
of both the free critical points and the fixed points that are not roots for the damped Traub’s method
under the condition that δ is close to zero. Finally, we conclude our research by examining Traub’s method
applied to the family pd(z) = z(zd − 1). We have proven the unboundedness of the immediate basins of
attraction for specific values of d , and we present evidences suggesting that this unboundedness holds for
all values of d .
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